107 research outputs found

    Growth Rate of an Aquatic Bryophyte (Warnstorfia fluitans (Hedw.) Loeske) from a High Arctic Lake: Effect of Nutrient Concentration

    Get PDF
    The High Arctic is one of the regions most susceptible to climate change on a global scale. Increased temperature, precipitation, and cloud cover are anticipated in the region, with consequent increases in nutrient runoff to surface waters. Mosses are often the dominant submerged macrophyte in Arctic and High Arctic lakes. If the growth rate of mosses in these lakes is nutrient-limited, then production could increase with climate changes that result in higher nutrient concentrations. We conducted a laboratory study to 1) measure the growth response of Warnstorfia fluitans (Hedw.) Loeske from a High Arctic lake to nitrogen and phosphorus availability; and 2) determine whether growth rate was N- or P-limited by examining its relationship to internal P and N content. The growth rates of W. fluitans were generally low, ranging from 0.003 to 0.012 day-1. The growth rates increased with increasing plant P content, but not with increasing N content, indicating that moss growth was P-limited at low P availability in the experiment. Critical plant P concentration for maximum growth rate was 0.086% dry weight. This is the first time a critical P threshold has been calculated. The results imply that if climate changes result in increased P concentrations in surface waters, a higher production of moss could occur in High Arctic lakes.L’ExtrĂȘme arctique est l’une des rĂ©gions du monde les plus susceptibles au changement climatique. La rĂ©gion devrait enregistrer des hausses de tempĂ©ratures, de prĂ©cipitations et de couvertures nuageuses, ce qui se traduira par des augmentations consĂ©quentes d’écoulement des nutriments dans les eaux de surface. Dans les lacs de l’Arctique et de l’ExtrĂȘme arctique, les mousses constituent souvent le macrophyte submergĂ© prĂ©dominant. Si le taux de croissance des mousses de ces lacs est restreint par les nutriments, la production pourrait alors augmenter avec les changements climatiques qui donnent des concentrations de nutriments plus grandes. Nous avons rĂ©alisĂ© une Ă©tude en laboratoire dans le but 1) de mesurer la rĂ©ponse de croissance de Warnstorfia fluitans (Hedw.) Loeske d’un lac de l’ExtrĂȘme arctique vis-Ă -vis de la disponibilitĂ© en azote et en phosphore; et 2) de dĂ©terminer si le taux de croissance Ă©tait restreint par N ou par P en examinant sa relation par rapport Ă  sa teneur interne en N et en P. Les taux de croissance de W. fluitans Ă©taient gĂ©nĂ©ralement faibles, allant de 0,003 Ă  0,012 jour-1. Les taux de croissance augmentaient en mĂȘme temps que la teneur en N des plantes augmentait, mais pas en mĂȘme temps que la teneur en P augmentait, ce qui laisse entrevoir que la croissance des mousses Ă©tait restreinte par P en fonction de la faible disponibilitĂ© en P dans le cadre de l’expĂ©rience. La concentration critique en P dans les vĂ©gĂ©taux donnant lieu Ă  un taux de croissance maximal Ă©tait de 0,086 % du poids sec. Il s’agit de la premiĂšre fois qu’un seuil critique de P a Ă©tĂ© calculĂ©. Les rĂ©sultats laissent entendre que si des changements climatiques se traduisent par des concentrations accrues en P dans les eaux de surface, une plus grande production de mousse pourrait se produire dans les lacs de l’ExtrĂȘme arctique

    Genetic diversity in three invasive clonal aquatic species in New Zealand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Elodea canadensis, Egeria densa </it>and <it>Lagarosiphon major </it>are dioecious clonal species which are invasive in New Zealand and other regions. Unlike many other invasive species, the genetic variation in New Zealand is very limited. Clonal reproduction is often considered an evolutionary dead end, even though a certain amount of genetic divergence may arise due to somatic mutations. The successful growth and establishment of invasive clonal species may be explained not by adaptability but by pre-existing ecological traits that prove advantageous in the new environment. We studied the genetic diversity and population structure in the North Island of New Zealand using AFLPs and related the findings to the number of introductions and the evolution that has occurred in the introduced area.</p> <p>Results</p> <p>Low levels of genetic diversity were found in all three species and appeared to be due to highly homogeneous founding gene pools. <it>Elodea canadensis </it>was introduced in 1868, and its populations showed more genetic structure than those of the more recently introduced of <it>E. densa </it>(1946) and <it>L. major </it>(1950). <it>Elodea canadensis </it>and <it>L. major</it>, however, had similar phylogeographic patterns, in spite of the difference in time since introduction.</p> <p>Conclusions</p> <p>The presence of a certain level of geographically correlated genetic structure in the absence of sexual reproduction, and in spite of random human dispersal of vegetative propagules, can be reasonably attributed to post-dispersal somatic mutations. Direct evidence of such evolutionary events is, however, still insufficient.</p

    BĂžrns mĂžde med det danske straffesystem: – pĂ„ vej mod mere ‘voksen-straf’?

    Get PDF
    AbstractOne of the shared features of the Nordic countries’ approach towards children in conflict with the law is that there is no distinct criminal justice system for children. Children in conflict with the law are treated within the same system as adults, albeit with specific regulations and sanctions designed specifically for them. The fact that children are handled within the same system as adults raises the question of whether and how the ‘punitive turn, Nordic style’, which, according to criminological scholars, emerged during the 1990s, has influenced the treatment and punishment of children within the criminal justice system. This question is particularly relevant as children are protected by specific human rights provisions, most notably the Convention on the Rights of the Child (CRC). Based on a descriptive statistical data analysis, this article explores whether a change in the use of sanctions towards children in the Danish criminal justice system can be observed in the period from 1980 to 2020. The findings are related to a discussion about children’s entitlement to special protection under the CRC

    Effects of depth and overgrowth of ephemeral macroalgae on a remote subtidal NE Atlantic eelgrass (Zostera marina) community

    Get PDF
    We conducted a short-term field sampling complemented with time integrating stable isotope analysis to holistically investigate status and ecological interactions in a remote NE Atlantic Zostera marina meadow. We found high nutrient water concentrations, large biomass of fast-growing, ephemeral macroalgae, low abundance, and biodiversity of epifauna and a food web with thornback ray (Raja clavata) as intermediate and cod (Gadus morhua) as top predator. We observed no variation with increasing depth (3.5-11 m) except for decreasing shoot density and biomass of Zostera and macroalgae. Our results indicate that the Finnoya Zostera ecosystem is eutrophicated. During the past three to four decades, nutrients from aquaculture have steadily increased to reach 75% of anthmpogenic input while the coastal top predator cod has decreased by 50%. We conclude that bottom-up regulation is a predominant driver of change since top-down regulation is generally weak in low density and exposed Zostera ecosystems such as Finnoya.Peer reviewe

    HipA-Mediated Phosphorylation of SeqA Does not Affect Replication Initiation in Escherichia coli

    Get PDF
    The SeqA protein of Escherichia coli is required to prevent immediate re-initiation of chromosome replication from oriC. The SeqA protein is phosphorylated at the serine-36 (Ser36) residue by the HipA kinase. The role of phosphorylation was addressed by mutating the Ser36 residue to alanine, which cannot be phosphorylated and to aspartic acid, which mimics a phosphorylated serine residue. Both mutant strains were similar to wild-type with respect to origin concentration and initiation synchrony. The minimal time between successive initiations was also unchanged. We therefore suggest that SeqA phosphorylation at the Ser36 residue is silent, at least with respect to SeqA's role in replication initiation

    Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation

    Get PDF
    This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum >2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe. Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic. Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows. The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them

    Measuring perceived air quality and intensity by means of sensor systems:The European project SysPAQ

    Get PDF
    International audienceAt present, indoor air quality is assessed exclusively by human panels. As this method is time consuming and cost intensive, little attention is paid to indoor air quality in the planning and operation of buildings. In recent years multi-gas sensor systems have been developed in order to mimic the human sense of smell. These systems comprise an array of gas sensors, with sensors of different sensitivity and selectivity, and a data processing unit. Up to now the sensors are not sensitive enough to mimic the perception of a human being. To further the development of these systems, the European research project SysPAQ (Innovative Sensor System for Measuring Perceived Air Quality and Brand Specific Odours) was started in September 2006. It will end in September 2009

    Warming shows differential effects on late-season growth and competitive capacity of Elodea canadensis and Potamogeton crispus in shallow lakes

    Get PDF
    Submerged macrophytes are likely to be affected by climate changes through changes in water temperatures and length of growing season. We conducted a lab experiment to examine the influence of a late-season temperature increase on growth, biomass allocation, and acclimation of 2 submerged macrophyte species, Elodea canadensis and Potamogeton crispus. We also ran competitive interaction experiments between the 2 species with mono- and mixed-species cultures in pots placed in outdoor heated mesocosms (5 years at ambient temperature and a higher temperature following the IPCC A2 scenario downscaled to local conditions but enhanced by 50%). In the lab, macrophytes collected in the 2 types of mesocosms were grown at ambient temperatures (12 &deg;C in September and 8 &deg;C in October) and 4 &deg;C higher. Warming had an overall stronger effect on E. candensis than P. crispus, particularly within the low temperature range studied. Hence, the relative growth rate (RGR) of E. canadensis acclimated to ambient mesocosm conditions increased 6-fold from low (8 &deg;C) to high (16 &deg;C) temperature whereas the RGR of P. crispus increased &lt;2-fold. In the competitive interaction experiment, warming increased the biomass and RGR of E. canadensis in the monoculture. In addition, warming increased shoot elongation of the plant in both the monoculture and mixed culture. P. crispus was generally unaffected by warming when grown in both monoculture and mixed culture, but competition decreased the elongation of shoots pre-adapted to ambient conditions and grown in the warmer mesocosms. The decomposition rate of E. canadensis accelerated with warming but was unaffected in P. crispus. We conclude that E. canadensis is a stronger competitor than P. crispus under warmer late-season conditions; however, it may have a higher demand for oxygen due to the increased decomposition rates at higher temperatures, particularly in the peripheral growing season, with potential profound effects on lake ecosystems. Although acclimatisation was evident, we suggested that temperature changes will affect the growth pattern of the 2 plant species and thereby perhaps induce a switch in macrophyte species dominance

    Canopy-Forming Macroalgae Facilitate Recolonization of Sub-Arctic Intertidal Fauna and Reduce Temperature Extremes

    Get PDF
    Ice can be an important structuring factor physically removing intertidal flora and fauna. At high latitudes in particular, the removal of canopy-forming algae by ice scour may be important as their canopy may serve to modify the extreme environment for marine organisms at low tide. We simulated the effect of ice scouring by manipulating the biomass of the canopy-forming algae Ascophyllum nodosum in a sub-Arctic fjord [“Full canopy,” “Reduced canopy,” “Bare (start),” “Bare (annual)”]. Over a three-year period, we quantified key physical parameters and the recolonization of flora and fauna to test the hypothesis that A. nodosum and rock rugosity facilitate recolonization of sub-Arctic intertidal fauna and that potential facilitation could rely on an ability of A. nodosum canopy to modify air temperature and ice scour. Finally, we estimated the recovery period of A. nodosum canopy height to pre-disturbance levels based on estimated early growth rates. We found that A. nodosum canopy facilitated higher species richness and recolonization of dominating faunal species (Littorina saxatilis, Littorina obtusata, Mytilus edulis, and Semibalanus balanoides), and also significantly reduced the high temperatures in summer and raised the low temperatures in winter. The abundance of M. edulis and A. nodosum recolonization increased significantly with rock rugosity and the recovery of A. nodosum canopy height was estimated to a minimum of 15 years. We conclude that algal canopy and rock rugosity play key roles in structuring sub-Arctic intertidal communities, likely by modifying environmental stress such as extreme temperature, desiccation, and by increasing the settling surface and the habitat complexity. As the distribution of canopy-forming algae is expected to shift northward, they may act as a key habitat facilitating a northward colonization of intertidal fauna in the Arctic. We highlight the importance of considering scales relevant to biological communities when predicting impacts of climate change on distributional patterns and community structure in the Arctic intertidal

    Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome

    Get PDF
    BACKGROUND: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P&lt;5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P&lt;10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P&lt;10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P&lt;0.005). CONCLUSIONS: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.</p
    • 

    corecore