1,480 research outputs found

    The role of B-cells in immunity against adult Strongyloides venezuelensis

    Get PDF
    BACKGROUND: Strongyloides venezuelensis has been used as a tool and model for strongyloidiasis research. Elimination of S. venezuelensis adult worms from mice has been particularly associated with proliferation and activation of intestinal mast cells and eosinophils. To date, the role of B-cells in the protective mechanism against adult Strongyloides infection in experimental animals has not been reported in the literature. Therefore, the present study was carried to investigate the role of B-lymphocytes in immunity against adult S. venezuelensis infection using mice with a targeted deletion of the JH locus. METHODS: JHD knockout mice with its wild-type Balb/c mice were infected by intra-duodenal implantation of adult S. venezuelensis. Fecal egg count, intestinal worm recovery, mucosal mast cells and eosinophils were counted. RESULTS: At day 11 post infection, parasites in wild-type mice stopped egg laying, while in JHD knockout mice parasites continued to excrete eggs until the end of the observation period, day 107. The higher number of parasite eggs expelled in the feces of JHD knockout infected mice was a consequence of higher worm burdens, which established in the small intestine of these animals. On the other hand worm fecundity was comparable in both groups of mice. Both B-cell-deficient mice and wild-type mice, showed an influx of mucosal mast cells and eosinophils. The absolute numbers in JHD knockout mice were lower than those seen in wild-type mice at day 11, but not to a level of significance. JHD knockout mice could not recover from infection despite the recruitment of both types of cells. CONCLUSION: Our findings highlight a role of B cells in mucosal immunity against invasion of adult S. venezuelensis and in its expulsion. Therefore, we conclude that B-cells together with mucosal mast cells and eosinophils, contribute to immunity against adult S. venezuelensis by mechanism(s) to be investigated

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    Morphology of graphene thin film growth on SiC(0001)

    Full text link
    Epitaxial films of graphene on SiC(0001) are interesting from a basic physics as well as applications-oriented point of view. Here we study the emerging morphology of in-vacuo prepared graphene films using low energy electron microscopy (LEEM) and angle-resolved photoemission (ARPES). We obtain an identification of single and bilayer of graphene film by comparing the characteristic features in electron reflectivity spectra in LEEM to the PI-band structure as revealed by ARPES. We demonstrate that LEEM serves as a tool to accurately determine the local extent of graphene layers as well as the layer thickness

    Topological string in harmonic space and correlation functions in S3S^3 stringy cosmology

    Get PDF
    We develop the harmonic space method for conifold and use it to study local complex deformations of TS3T^{\ast}S^{3} preserving manifestly SL(2,C)SL(2,C) isometry. We derive the perturbative manifestly SL(2,C)SL(2,C) invariant partition function Ztop\mathcal{Z}_{top} of topological string B model on locally deformed conifold. Generic nn momentum and winding modes of 2D c=1c=1 non critical theory are described by highest % \upsilon_{(n,0)} and lowest components υ(0,n)\upsilon_{(0,n)} of SL(2,C)SL(2,C) spin s=n2s=\frac{n}{2} multiplets (nk,k))% (\upsilon _{(n-k,k)}) , 0kn0\leq k\leq n and are shown to be naturally captured by harmonic monomials. Isodoublets (n=1n=1) describe uncoupled units of momentum and winding modes and are exactly realized as the SL(2,C)SL(2,C) harmonic variables Uα+U_{\alpha}^{+} and VαV_{\alpha}^{-}. We also derive a dictionary giving the passage from Laurent (Fourier) analysis on TS1T^{\ast}S^{1} (S1S^{1}) to the harmonic method on TS3T^{\ast}S^{3} (S3S^{3}). The manifestly SU(2,C)SU(2,C) covariant correlation functions of the S3S^{3} quantum cosmology model of Gukov-Saraikin-Vafa are also studied.Comment: 91 page

    A global disorder of imprinting in the human female germ line

    Get PDF
    Imprinted genes are expressed differently depending on whether they are carried by a chromosome of maternal or paternal origin. Correct imprinting is established by germline-specific modifications; failure of this process underlies several inherited human syndromes. All these imprinting control defects are cis-acting, disrupting establishment or maintenance of allele-specific epigenetic modifications across one contiguous segment of the genome. In contrast, we report here an inherited global imprinting defect. This recessive maternal-effect mutation disrupts the specification of imprints at multiple, non-contiguous loci, with the result that genes normally carrying a maternal methylation imprint assume a paternal epigenetic pattern on the maternal allele. The resulting conception is phenotypically indistinguishable from an androgenetic complete hydatidiform mole, in which abnormal extra-embryonic tissue proliferates while development of the embryo is absent or nearly so. This disorder offers a genetic route to the identification of trans-acting oocyte factors that mediate maternal imprint establishment

    Molecular characterization of seven genes encoding ethylene-responsive transcriptional factors during plum fruit development and ripening

    Get PDF
    Seven ERF cDNAs were cloned from two Japanese plum (Prunus salicina L.) cultivars, ‘Early Golden’ (EG) and ‘Shiro’ (SH). Based on the sequence characterization, these Ps-ERFs could be classified into three of the four known ERF families. Their predicted amino acid sequences exhibited similarities to ERFs from other plant species. Functional nuclear localization signal analyses of two Ps-ERF proteins (Ps-ERF1a and -1b) were carried out using confocal microscopy. Expression analyses of Ps-ERF mRNAs were studied in the two plum cultivars in order to determine the role of this gene family in fruit development and ripening. The seven Ps-ERFs displayed differential expression pattern and levels throughout the various stages of flower and fruit development. The diversity in Ps-ERFs accumulation was largely due to the differences in their responses to the levels of ethylene production. However, other plant hormones such as cytokinin and auxin, which accumulate strongly throughout the various developmental stages, also influence the Ps-ERFs expression. The effect of the plant hormones, gibberellin, cytokinin, auxin, and ethylene in regulating the different Ps-ERF transcripts was investigated. A model was proposed in which the role played by the plant hormone auxin is as important as that of ethylene in initiating and determining the date and rate of ripening in Japanese plums

    A High Resolution Color Image Restoration Algorithm for Thin TOMBO Imaging Systems

    Get PDF
    In this paper, we present a blind image restoration algorithm to reconstruct a high resolution (HR) color image from multiple, low resolution (LR), degraded and noisy images captured by thin (< 1mm) TOMBO imaging systems. The proposed algorithm is an extension of our grayscale algorithm reported in [1] to the case of color images. In this color extension, each Point Spread Function (PSF) of each captured image is assumed to be different from one color component to another and from one imaging unit to the other. For the task of image restoration, we use all spectral information in each captured image to restore each output pixel in the reconstructed HR image, i.e., we use the most efficient global category of point operations. First, the composite RGB color components of each captured image are extracted. A blind estimation technique is then applied to estimate the spectra of each color component and its associated blurring PSF. The estimation process is formed in a way that minimizes significantly the interchannel cross-correlations and additive noise. The estimated PSFs together with advanced interpolation techniques are then combined to compensate for blur and reconstruct a HR color image of the original scene. Finally, a histogram normalization process adjusts the balance between image color components, brightness and contrast. Simulated and experimental results reveal that the proposed algorithm is capable of restoring HR color images from degraded, LR and noisy observations even at low Signal-to-Noise Energy ratios (SNERs). The proposed algorithm uses FFT and only two fundamental image restoration constraints, making it suitable for silicon integration with the TOMBO imager

    Substrate-induced band gap opening in epitaxial graphene

    Get PDF
    Graphene has shown great application potentials as the host material for next generation electronic devices. However, despite its intriguing properties, one of the biggest hurdles for graphene to be useful as an electronic material is its lacking of an energy gap in the electronic spectra. This, for example, prevents the use of graphene in making transistors. Although several proposals have been made to open a gap in graphene's electronic spectra, they all require complex engineering of the graphene layer. Here we show that when graphene is epitaxially grown on the SiC substrate, a gap of ~ 0.26 is produced. This gap decreases as the sample thickness increases and eventually approaches zero when the number of layers exceeds four. We propose that the origin of this gap is the breaking of sublattice symmetry owing to the graphene-substrate interaction. We believe our results highlight a promising direction for band gap engineering of graphene.Comment: 10 pages, 4 figures; updated reference

    Dualities in Quantum Hall System and Noncommutative Chern-Simons Theory

    Get PDF
    We discuss different dualities of QHE in the framework of the noncommutative Chern-Simons theory. First, we consider the Morita or T-duality transformation on the torus which maps the abelian noncommutative CS description of QHE on the torus into the nonabelian commutative description on the dual torus. It is argued that the Ruijsenaars integrable many-body system provides the description of the QHE with finite amount of electrons on the torus. The new IIB brane picture for the QHE is suggested and applied to Jain and generalized hierarchies. This picture naturally links 2d σ\sigma-model and 3d CS description of the QHE. All duality transformations are identified in the brane setup and can be related with the mirror symmetry and S duality. We suggest a brane interpretation of the plateu transition in IQHE in which a critical point is naturally described by SL(2,R)SL(2,R) WZW model.Comment: 31 pages, 4 figure
    corecore