
23/1

Abstract

Two different kinds of cellular sensor-processor architectures are used nowadays in various
applications. The first is the traditional sensor-processor architecture, where the sensor and the
processor arrays are mapped into each other. The second is the foveal architecture, in which a
small active fovea is navigating in a large sensor array. This second architecture is introduced
and compared here. Both of these architectures can be implemented with analog and digital
processor arrays. The efficiency of the different implementation types, depending on the used
CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use
digital implementation rather than analog.

Index Terms

Focal plane, sensor-processor, parallel processing, SIMD, fovea, CMOS sensor, CNN-UM

I. INTRODUCTION

Focal-plane cellular sensor-processor chips [6]-[8] traditionally used the combined sensor-processor

array architecture. The common features of these architectures are that there is a one to one

correspondence between the sensors and the processors, and the sensor and processor arrays are

mapped into each other. Since the processors in these implementations occupy significant silicon area,

the pitch size of these sensor-processor chips is between 50-200 microns. This yields a low fill-factor

(5-15%); moreover, it prevents building high resolution (like 1024x1024) arrays. The largest

operational combined sensor-processor array is the ACE16k [8]. It was implemented on 0.35 micron

technology, and its size is 128x128. However, this focal-plane sensor-processor array can easily

capture and process up to 50,000 FPS real-time, which makes them the fastest image processor devices

in the world; it is not usable in many applications, where higher resolution is required. A new version

of the ACE16k, currently under development, will step down to 0.18 micron, and reach roughly 20-

micron pitch size and QZIF resolution.

Some applications, like surface inspection, image enhancement requires the analysis of the entire

image continuously, hence the one-to-one correspondence of the sensors and the processors is needed.

Analogical and Neural Computing Laboratory, Hungarian Academy of Sciences, and the Jedlik Laboratories, Faculty of
Information Technology, Pázmány Péter. Catholic University, Budapest; email: [foldesy,zarandy,rcsaba,roska]@sztaki.hu; web:
lab.analogic.sztaki.hu

Digital implementation of the cellular sensor-
computers

Péter Földesy, Ákos Zarándy, Csaba Rekeczky, and Tamás Roska

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/16288079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

23/2

However, in other applications, like object tracking, or object identifications, navigation, etc, where

smaller parts of the scene should be precisely analyzed only, an active fovea, navigating in a high-

resolution image is more efficient. Though there is no single chip implementation of the foveal

architecture today, a vision system, called Bi-i [9] was built based on this structure, and proves the

viability of this architecture.

In the first part of this paper, we are going to introduce the digital implementation of the cellular

sensor-computer architecture. In the third chapter, we describe the instruction set and computational

performance. Later on, considerations of the technology scaling down and its effect on the

implementation are given. Later on, implementation studies are presented and finally we conclude our

work.

II. SYSTEM ARCHITECTURE OVERVIEW

The system architecture of the cellular sensor computer is introduced here has been developed to

integrate the essential tasks in the same entity, namely the sensing, the tightly coupled parallel

processing, and a top level communication and algorithmic control. The name of the game in all focal

plane array processor implementation is the spatial resolution. The higher the spatial resolution (pixel

count) the more precise image sensing and processing operations can be achieved. This certainly means

that we have to minimize all the circuits, to be able to shrink the pitch size as much as possible.

In the digital domain, the simplest processor techniques are the bit sliced architectures. Though these

processors can deal with a single bit in a clock cycle, in a sequence of clock cycles, it can calculate

with arbitrary precision numbers. In image processing applications, 4-16 bits precision is typically

enough. The advantage of the architecture is that the execution time is proportional with the precision,

which makes possible finding trade-offs between precision and execution time.

From implementation point of view, the integration of the different functionalities, like sensing,

processing, and control, means a solution for different preferences. These preferences can be high

speed sensing, less design effort, or high spatial resolution. The different aims directs to different

implementation of the same system idea. Our answers for the above three preferences are the integrated

sensor-processor array, the separated arrays, and the foveal architecture (see Figure 1.). In the later

chapters, we show other, finer tradeoffs found inside these basic classes.

Real-time controller

Communication processor

Sensor Processor

Real-time controller

Communication processor

Real-time controller

Communication processor

Integrated Separated Foveal

ADC

23/3

Figure 1. Three basic configurations of sensory and processing kernel integration.

A. Information flow
As in any complex systems, we can identify several levels of hierarchy in the cellular sensor

computer architecture: sensor, processor, array, and system. The most interesting issue is that how the

sensed scenes are processed and represented throughout this hierarchy.

The lowest level tasks, such as fixed-pattern-noise correction of the sensors, are performed by the

individual cells. Than the information abstraction (e.g. feature extraction) goes upward in the hierarchy,

from sensed raw maps to simple decisions affected by a small neighborhoods of cells. Meanwhile,

high-level tasks, like the focus of attention or adaptation mechanisms of the sensing medium, are

initiated from high level down to individual sensors. At this level, the need for maintaining a

connection with a wider environment incl. other sensors, equipments, vehicle control also arise.

For low-level abstraction, a basic instruction set is need that is capable to support the elementary

topographic processing operations and to perform local adaptation of the sensors. These requirements

motivated the cell architecture: at the top level two units in charge for control and communication

tasks. We show that these connections exist even in different physical forms of the architecture, such as

the integrated or the separated sensor-processor arrays.

B. Sensor-Processor Cell
The workhorse of the architecture, the cells, can be summarized as a sensor-processor complex with

local and global interconnection. As our primary aim to prove that the cell processors implemented in a

digital logic is a feasible solution, we should address the question of interfacing the analog sensors to

the digital circuitry. In contrast to analog implementation, the discrete time sampling and processing is

must be used. Since, the sensors mostly produce analog signals reflecting the intensity of some physical

phenomenon, an analog-to-digital converter is included into every cell to perform not only the time, but

value discretization as well.

The converted signals are corrected (e.g. FPN reduction, gamma correction), processed (e.g.

filtering, threshold, etc.), and stored in the cell processors. The reason for integrating sensors,

converters, and a processor in a single entity, not only the accumulated sensing speed, but the unique

possibility to control the sensing mechanism at the same rate. For this purpose, a local feedback path is

inserted into the cell complex, coming from the processor kernel towards the sensor (or sensors) by

means of digital-to-analog conversion. As we show later, this conversion could be as simple as pulse

width modulation or a delayed deactivation moment.

In order to fulfill the topographical processing tasks (e.g. active wave propagation or morphological

feature extraction), the processor kernel has been chosen similar to any general-purpose processor

architecture: arithmetical resources, registers, local data storage, and external ports.

C. Cell Array Formation
The next architectural level is the integration many of such sensor-processor into a coherent array.

We would like to emphasize, that the practical task of mass instantiation of cells is as difficult and

complex as the cell design itself.

The topographic operations require spatially identical architecture and functionality (apart from local

data dependency); hence equal cells are placed in a regular array driven by the same instruction flow.

23/4

For the shake of simplicity, the cell array grid is Cartesian and each cell is connected to its finite

neighbors in horizontal, vertical, and diagonal directions in the same way as the CNN-UM architecture

formed [1]-[3]. Beside the local interconnection, global sparse connectivity, and on the periphery,

boundary cells are included in the array forming.

In a simple way, the digital portion of the array architecture is quite similar to of the modern FPGAs

and other reconfigurable computing engines: reconfigurable resources, distributed memory blocks,

programmable interconnections. The distinguishing feature of the cell array from this point of view is

the shared, uniform configuration setting, and the single-cycle, run-time full reconfiguration capability.

The price for the run-time reconfigurability is significant. However, at first sight the local and global

data exchange seems to be dominant, it is not so. The increasing cell complexity and versatility among

with the continuous reconfigurations implies one to two orders of magnitude higher data throughput

between the central controller and cells, than in between the cells themselves.

D. Sensor-array and Processor-array architecture
By mixing the inherently analog sensing and digital processing results in a unique possibility for

adaptive sensing, on the other hand rises an extreme design challenge.

The separated sensor and processor array gives a solution for splitting the two different

functionalities. This separation has been done in a way, that the advances of integration remain, namely

quick bidirectional connectivity between sensors and processor array is preserved. Apart from the one-

to-one processor and sensor parity, the need for large sensory resolution with local fovea exists. To

address this issue, we can break the symmetric correspondence and inflate the sensory array and

associate time-by-time the processor resolution to different window of the sensed view.

E. Control and communication modules
The execution of the algorithm flow on the cellular sensor computer naturally raises also the need for

continuous monitoring of the environment and the control of the cell array. These two rather different

tasks can be satisfied best with two dedicated units, namely with a real-time processor and a

communication processor. The real-time processor is in charge for quick reconfiguration of the cell

array to perform operations as microcode sequences, and gathering or abstracting information coming

from it. The communication processor is responsible for handling the uneven requests from the

environment and from the array, provides standard protocol format for decisions, data, and images.

III. CELL STRUCTURE AND ARRAY FORMATION

The structure of the sensor-processor cell has been chosen to meet the requirements of the relatively

huge number of circuit elements, control lines, and it still leads to compact solution. In this chapter, we

give architectural details of the processor kernel structure, the sensory integration both in integrated

and separated sensor and processor array architectures.

A. Cell Structure
Most of the complex topographic and sensory signal processing operations can be divided into

smaller functions, such as series of conditional branches, additions, or comparisons. These basic

functions are also composed of a set of single bit addition and data manipulation steps (atomic steps).

By selecting common items in the different atomic steps, a highly compact architecture can be build.

23/5

Such a structure enables high flexibility and throughput rate by reconfiguring groups of basic units for

different tasks.

For mapping these ideas to architecture, a versatile structure of a cluster of blocks and flexible

crossbar switches in between has been chosen (similar to FPGAs). The choice for a crossbar switch for

intra-cell interconnectivity serves the parallel data access for the multi-input blocks and on-the-fly

function mapping. The cell components are the followings (see Figure 2.):

• Processor elements

o Reconfigurable arithmetical units

o Temporary register file

o Digital memory

o Crossbar switch including condition flags

• Communication elements

o Global and local area interconnection ports

• Sensory block

o Sensors and their signal conditioning units

o AD and DA converters

Local data and control

Global
interconnection

Global
configuration
commands

Sensory
block*

Local area
Interconnection

Reconfigurable processing
resources: arithmetical and
morphological datapaths

Registers Digital
memory

Crossbar switch for data and condition flags

* In the integrated
architecture

Figure 2. The cell structure of the sensor-processor architecture.

B. Processor Elements
In the selection of processing kernel, the main challenge is to reach small cell size, or better say a

high performance/area ratio. A natural way for compactness is the specialization. For the appropriate

architectural choice, the proportion of the specialization versus functional versatility must be selected

taking care of other design issues such as control and data throughput rate. For this choice, one should

consider all levels from functionality to circuit design.

In a wider scene, one can find many ways towards mass processing or parallel processing. The main

driving force is the technology scaling down, which enables the integration of increasing number of

processing engines. One can find excellent design space explorations [17] for such trade-offs from the

basic 1-bit processor up to the array of floating-point units. From they results, it can be concluded, that

for a given functional complexity, the simplest architecture with the highest number of cloned

processors provides the best performance per unit area (see also [18]).

The near-sensor topographic processing inserts another constraint into the design, namely the

existence of the regular grid of sensors. The processing elements and other components should be

23/6

spread around this regular grid. This constraint limits not only the complexity and array size of the

processing units, but the number of maximally routable control signals also. Furthermore, the

rectangular grid in the processor array generates a very complex layout arrangement problem, which

requires very large efforts from the design team to solve.

Based on the above considerations, we have selected a bit-serial architecture for the processor

elements. It holds for any element in the cell architecture, the registers, the memory, as well as the

communication lines. The processor kernel is a simple unit, holding the main features of a general-

purpose processor. It has bit-serial processing resources, registers, memory access, condition flags, and

a dataflow (i.e. a crossbar switch) between the elements. In the next sections we overview the content

of these blocks.

1) Processing resources
The processing resources are as simple elements as a collection of a 4-input LUT, SR flip-flop, a

full-adder, and some other simple gates (see Figure 3.). These are combined later by the crossbar

switch to form complex computations (i.e. they are like configurable logic blocks, CLBs, in an FPGA).

The reason for the double datapaths in this block is double fold. The full-adder path is clearly for

addition/subtraction-based arithmetics, while the LUT/SR flip-flop path is for accumulation of series of

bit-wise logic operations. The second goal for the doubled datapath is the capability of parallel

extraction of information regarding to saturation condition, 2’s complement and unsigned arithmetics,

local addition/subtraction selection, and comparison type operation acceleration.

SR ff

Cout

SFULL
ADDER

Enable

Reset

A

B

Cin

From the
crossbar
switch

To the
crossbar
switch

Morphological datapath

Arithmetical datapath

R

S4:1 LUT

Figure 3. The reconfigurable logic block.

2) Storage and local interconnection
The local data storage and temporary registers together are crucial for high performance, simply by

providing information for the processing resources in time. Both storage units are organized into bit-

serial random access 1-D array with locally settable write enable and a local input source selector.

The local intra-cell interconnection is placed near to the main memory data access. As can be seen in

Figure 4., the different blocks of the cell can access the memory through a neighborhood selector. This

solution merges the neighborhood connectivity into the same environment together the memory or

registers. In practice, all the cells can work with the data stored in the neighbors, as it was their self-

memory content. This solution significantly reduces the application development time by simplifying

the neighborhood operators implementation and providing a more conventional programming model.

23/7

Main
memory

Control lines

Write enable

Data input

Neighboring cells

Write enable

Data input Register
file

From the
crossbar
switch

To the
crossbar
switch

Neighboring cells

Figure 4. The storage units and the local area interconnection.

3) Crossbar switch
The crossbar switch is responsible for quick reconfiguration of the resources by different

connections, and for temporary storage of the input/output values of the different units. The former task

is implemented as a sparse connection matrix. The available connection paths are selected by profiling

a large collection of operations. The storage and the synchronization of the unit outputs to specific

module inputs are achieved by enabled edge-triggered flip-flops and multiplexers at each connected

point in the switch matrix (see Figure 5). Hence, the reconfiguration instructions are collections of

multiplexer control and clock enable signals of this matrix.

CLK, Reset

D FLIP-
FLOP

Input from moduls

Output to
moduls

Global control
signal lines

…

Figure 5. Example for the sparse connectivity matrix, and one element of the crossbar switch.

4) Global interconnection
The global interconnection is prepared for three different data transfer modes, namely to-from

selected cells or row/column of cells, for single data value transfer for all the cells, and for single bit

extraction from the whole array by a multi-input logic gate.

For data transfer, the straightforward solution is to chain all the cell memory blocks into a large

memory array, augmenting it by some address, data, and control lines. The resulting architecture will

behave exactly like a standard memory.

The existence check of black (or white) pixel in the image or in a portion of it could highly increase

the efficiency of the binary mathematical morphology. A cell wise input logic “OR” gate is used for

this single value extraction.

5) Data condition flags
The local data dependent execution is elementary for complex operations in any SIMD architecture.

For this purpose, we allocated some flags mapped into the crossbar switch that enables or disables the

memory/register update. Through the programming of the enabling flags, not only the algorithm flow

can be manipulated, but the common task of region-of-interest (ROI) processing is solved as well.

23/8

C. Controlled sensing
The outstanding feature of integrated sensing and digital processing can be explored fully if we

understand the combined nature of the continuous time dynamics of the measured physical

phenomenon and the discrete time processing.

At the lowest level, the sensor dynamics need to be captured. Since the attached controller

(processor) is digital, our model should be discretized to yield a proper control system. At this control

level, the system become time based, as the events are triggered by given times. At each measurement

time instant, an observation is provided by sensor reading to the processors, which will in turn produce

an input to them via an actuator. This low-level control loop inherently requires the bidirectional

conversion between the two different portions. On higher level, the algorithmic background will

interpret the sensed data. The reader is redirected for theoretical background and the biologically

motivated utilization of the integrated sensing and processing in [2]-[3].

For the shake of simplicity, let us consider the case of visible light sensing by a simple linear sensing

medium sampled by temporal integration. This case covers the commonly used CMOS active pixel

sensors or CCD sensors. In this scene, the sensory signal is an integrated value of the light intensity

over a discrete period and the actuation is the discrete control of the integration. The integration in

practical circuits must start from an initial value by a reset event; its control is governed by the initial

value, the time instant of the reset event, and the sampling period (see Figure 6).

Continuous
time sensor ∫dt AD

conversion
Processor

Initial level

Reset event, integrating period

Figure 6. Sensor control model of the architecture.

Numerous advances can be gain from this approach. Several basic results of digital signal processing

and still camera technology could be applied. The representative examples are the bad pixel or fixed-

pattern noise removal, gamma correction, oversampling or interpolation for reducing the temporal

noise and increase the sensed dynamic range [5], [10]-[12], [29], or motion detection during the

integration time.

In the rest of this chapter, we describe the conversion between the sensor and processor by showing

a solution for the described case. Later on, some interesting possibilities of sensing are listed.

1) Sensor signal A-D conversion
The conversion of the sensory output has been assimilated to the bit-serial architecture of the

processor. For both circuit area and simplicity, single-slope type AD conversion has been chosen. In

architecture, it is composed of per-cell comparator and a global analog signal source. During operation,

a simple algorithm stores data in the memory of the processors depending on the comparator output.

The basic idea of the distributed single-slope ADC is to generate a continuously increasing digital

value in conjunction with a ramp signal provided by the global analog source. The integrated signal of

the sensor is compared to the analog ramp signal, and whenever their output becomes equal to the ramp

signal, the associated digital value is stored. Hence, after sweeping through the complete dynamic

range, every sensory output will have a digital representation, and the AD conversion is done [29] (see

23/9

Figure 8). In order to increase the flexibility of the architecture and to separate the conversion time

requirement from the integration period, the converter is fed by a sample-and-hold unit (Figure 7).

Continuous
time sensor ∫dt AD

conversion

Initial level

Reset event

Sample and
hold

Sampling event

Analog, digital
ramps

Processor

Figure 7. Sensor control model of the integrated sensor-processor architecture.

time

Integrating
node

Ramp signal
Digital value

Stored
value

Reset Integration period Conversion

Reset level

Sampled
value

Sampling

Figure 8. Reset event, integration, sampling, and conversion periods, and the working of the single-slope AD
conversion.

2) Sensing schemes
Given by this flexible architecture, one becomes capable to impellent existing or novel non-

traditional sensing methods. As we allocate the different events of the control loop into local control,

the more interesting possibilities opens: By consecutive snapshots, there is the possibility to estimate

more precisely the intensity map of the visual scene [4]-[5] by weighted averaging the samples. The

extreme differences in a view result in under-exposure and saturated regions. By adaptation of

algorithms of [19], [20], one can feed back this information to the sensing medium, now, through the

integration time, achieving a realistic, compressed dynamic range image. In the described architecture,

not only the inter-frame adaptation can be solved, but using the intermediate samples, an intra-frame

adaptation too. Furthermore, the motion blur free captures can be produced exactly in the same way as

[24] describes.

D. Separated sensor and processor array
As a distinguishing feature of the integrated sensor-processor architecture is the continuous sensory

control loop, in the physical separation of the sensing and processing, we seek for a solution to preserve

this property. After considering different possibilities, the architecture has been found to preserve this

feature have three arrays, namely

• a sensor array of resolution, with per-pixel sampling information,

• a 1-D AD converter bank,

• and the processor array,

where, in principal, the sensor array resolution is identical to of the processor array (see Figure 9.)

23/10

Initial level

Reset event

Sample and
hold

Sampling

Control

Per sensor
latch

ProcessorContinuous
time sensor

AD
conversion∫dt

Figure 9. The separated sensor and processor array data loop.

At first sight, the column-wise digitalization seems to be slower than the distributed single-slope

conversion, but it is surprisingly not so. The different implementations confirm that the conversion rate

remains in the same range for various array sizes [31]-[33]. From the other hand, the control datapath

from the processors towards the sensor array shows up two differences from the integrated case: the

transfer rate that limits the temporal resolution of sampling/integrating period, and the synchronicity of

the control throughout the whole array. The first issue can be addressed by high speed, column-wise

bus system, while the second one can be guaranteed by master-slave latch type in the sensor array. It

turned out, that the temporal resolution of 5-10 microsecond is enough for high quality adaptation

mechanisms [19]. This rate can be maintained with no special requirements on the data bus systems

(e.g. 100 MHz) up to reasonable array sizes.

E. Foveal architecture
In many visual application fields, large image sensing cannot be compensated by a smaller one with

embedded processing capabilities. On the other hand, the foveal approach for navigation with high

efficiency in a large view by a smaller fovea window is a satisfying compromise [35]-[36]. To

considering this field, it is worth to note that the sensory and processor resolution can be also separated

by simple multiplexing at the communication channels as an extension of the separated architecture.

In order to satisfy the higher sensory resolution needs, the sensory backward loop can be cut for

further increase the sensory resolution [34]. The resulting architecture is composed of a classic sensor

array (e.g. a simple active pixel type), column-wise converters, and a processor cell array. With this

reasoning, we arrived to the third basic architecture type of cellular sensor computer.

IV. INSTRUCTION SET AND OPERATION SPEED

In this chapter, we overview some distinguishing features of the digital processor as a continuously

reconfigured bit-serial engine, and we draw performance figures for it. For the description of the

architecture’s working mechanism, we overview the classic bit-serial operations with focus on resource

reusability.

A. Bit-serial Implementation
Several work concluded that the computational throughput per unit area is higher for bit-serial

arithmetics than bit-parallel (e.g. [18]). It is due to isomorphic data mapping, straightforward pipeline

structures, and relatively high-speed logic. The reason why we cannot found several bit-serial

processors around is that, these architectures solves usually very well defined tasks with hard wired

architecture [13]. We show that the combination of the compact architecture and the flexibility of run-

23/11

time reconfigurability, a versatile but small computing engine can be build. The work in [21] describes

FPGA architecture for bit-serial datapath synthesis. Although, it is a combination of the

reconfigurability and bit-serial arithmetics, similar to our case, they do not consider run-time

reprogramability.

The operations are split into bit level logic operations due to the bit-serial architecture. During

operation, the data flow can be imagined as combination of data and control streams. The data bit

streams come from different sources (e.g. memory or registers) they are combined in the arithmetical

units and the resulting streams or single bits are stored in one of the sinks (e.g. the memory). The units’

switches and the crossbar switch control the data stream flow in a form of continuous reconfiguring

control stream.

The bit-serial arithmetics [13]-[14] in general can be described by its basic resources, that are unit-

delay, logic inversion, two-input gates, full-adder, and by their connectivity. Let us now recall the basic

operations and how they are mapped to the cell architecture.

1) Addition, subtraction, comparisons
Supposing the architecture showed in Figure 10., the two operands are fed to it starting from the least

significant bit up to the most significant one. Depending on the operation, the operand B is negated,

and setting the carry bit to logic one at the first step, and subtraction is performed. The carry bit is

mapped to a flipflop in the crossbar switch.

Full adder
Operand A

Operand B

operation
=1

Result

carry

Figure 10. The basic scheme of addition/subtraction in the bit-serial processor.

The result is a bit stream containing the sum or difference. There is a problems exists, namely, the

word length of the result is larger than the operands. As usually the word length is required to be

constant, saturation handling is implemented to overcome this problem. When the result is larger or

smaller than the available range, the resulting value is changed to the largest positive/negative values,

respectively. For this solution, the existence of overflow/underflow must be detected first. The

mathematical form of such a case is that the last carry value is different from the most significant bit of

the result.

Regarding to the comparisons, the basic cases are the equivalence, greater and equivalent, and

greater checking between the two operands. To perform this checking, we can use the other datapath of

the processor to monitor and collect the resulting bitstream. For example, in the equivalence checking

(see Figure 11.), after resetting the SR flip-flop and setting the carry bit, the B operand is subtracted

from the A operand, while the morphological datapath will issue logic one only if there was not a

single bit difference in the subtraction result (i.e. operand A is equal to operand B).

23/12

Full adder
Operand A

Operand B

Logic high
=1

Result

carry

4:1 LUT as
logic OR

SR ff

Reset

Logic one
if A=B

Logic low
R

S

Enable

Morphological datapathArithmetical datapath

Figure 11. The two datapaths are configured for equivalence checking.

2) Multiplication
The multiplication is done in a serial-serial manner, that is both operands come bit-by-bit. In a

general case, the serial-serial multiplication has a time complexity of O(N2), if the word length is N. On

the other hand, in many grayscale low-level image processing tasks (e.g. convolution), the multiplicand

is constant, hence a number of zeros can be found in them. Skipping the multiplication of the local

operand is for these bit positions; the required time can be significantly reduced (e.g. for Gaussian

kernels the ratio of ones in the neighborhood weights is about 20-30% after normalization to 8-bit).

Regarding to this solution, the local memory and register architecture is worth to mention. They have

not only bit-serial interfaces, but also random access. Thus, the required shift operation in the bit-serial

multiplication is done simply by modifying the addressing of them and skipping the unnecessary

multiply-by-zero cases. There are some other tasks to be done as well: sign extension, truncation, and

saturation handling. The sign extension is performed during operand reading by holding first the least

and than the most significant bits in the operands’ flipflops in the crossbar switch. The morphological

datapath is used for overflow/underflow checking in parallel by monitoring the leading bits. The

overflow/underflow detection result is handled during output storage e.g. in the memory by generating

the proper saturating value and controlling the memory source selector. Note that how the datapath

logics and the crossbar switch is used in different configurations during a single operation.

3) Morphological Operations
The binary mathematical morphology is a powerful tool for binary (black-and-white) image

processing [15]-[16]. The most representative examples are the dilation, erosion, or ones that are more

complex, such hit-and-miss or object logic operations.

The atomic step of the mathematical morphology is a logic sum, multiplication, or mixture of them

in a finite neighborhood of the pixels described by the so-called structuring elements. By forming a bit-

stream packet from all the neighboring pixels in the cells, the morphological datapath unit can easily

used to perform any operation on them.

Let us describe the example of a hit-and-miss operator [15]. These operators are morphological

equivalents of pattern matching, a well-known technique for matching patterns based upon cross-

correlation. The task is the following:

),(),(),,(MAEHAEMHAHitAndMiss cc∩= ,

()I
B

ABAE
∈

−=
β

β),(,

23/13

where ()E is the operator of erosion, H and M is the hit and miss structuring elements and A is the

binary input image, respectively. Streams can be formed from the neighboring values and the

structuring elements. The neighboring values comes from the cell and the neighboring cells’ memory.

The structuring element stream is mapped to the 4-input LUT to invert or not the memory data stream

(if the current position is part of the hit structuring element, the data is inverted, otherwise not), and

finally, the SR flipflop is used for the accumulation of the formed data stream (see Figure 12.). The

handling of the don’t care positions in the structuring elements is performed by controlling the enable

signal of the SR flipflop. At the end of the process, the SR flipflop contains the result of the operation.

The operations build up from the pattern matching, such as thinning, use this basic step and the

consecutive logic addition or subtraction. It is worth to mention, that the propagative operations (such

as thinning), which has a well defined steady state, can be monitored for such conditions by the global

logic gate and stop further iterations.

SR ff

Enable

Reset

Morphological datapath

R

S

Logic low

Neighborhood selector is addressed
to recall the current position in the
structuring elements

LUT is configured to be an:
• Buffer, if miss element is defined in the

position
• Inverter, otherwise

Enable signal is:
• Active if hit or miss

element is defined
• Inactive otherwise

4:1 LUT

Figure 12. The processor is configured for mathematical morphology pattern matching.

B. Performance
In this chapter, we conclude some important operations and their execution time in clock cycles. In

general, the execution time is closely related to the number of involved bits, with the addition of 2-3

cycles latency due to the pipelined operation caused by the crossbar switch.

Let us first summarize the basic operations, and later on more complex operations come that are

composed of the basic ones in Table I, and Table II, respectively.

Table I. Basic operation types

Operation name Required cycles Latency

Bit-wise logic operation 1 2

N-bit signed/unsigned addition N 3

N-bit*2K signed/unsigned accumulation in M-bit accumulator M-K 3

Saturation handling, in addition to accumulation for N-bit output N 2

Constant setting for n-bits N 2

Comparison of one or two N-bit values N 3

Table II. Complex operation types#

Operation name Required cycles

8-neighborhood morphology I: dilation, erosion 11

23/14

8-neighborhood morphology II: iteration of a hit-and-miss operation with 8 sub-

kernels (skeleton, thickening)

70

Threshold (grayscale to 1-bit) 12

Compare images 12

Image addition with saturation 18

Multiplication with constant (sustained) 98

General 3x3 convolution (sustained) 890

Sobel edge operator 134

Median filter in 3x3 neighborhood 630

Blurring in 5x5 neighborhood by Gaussian kernel of sigma=1, sum of weights are

normalized to 255

675

Grayscale images have 8-bit resolution.

V. SCALING DOWN AND GENERAL CONSIDERATIONS

The circuit feature size scaling down effects the leakage power, process variability, reduces the

supply voltages, the design productivity, causes signal integrity (SI) problems. From circuit design

point of view, a sensor-processor system is naturally degraded by these difficulties too. As it is being a

complex mixed-signal architecture, not only the relatively easily handled digital circuit performance

degradation occurs, but also significant problems rise at the analog portion of the system [23]. These

prospective difficulties can be overcome by the separated sensor and processor arrays.

In this chapter, we give an overview on how the scaling down affects the sensor-processor

integration both in area and performance, and what solutions has been found for further advances, and

we evaluate several tradeoffs.

A. Digital circuitry
For the speed and area estimations, we approximate the equivalent gate size of the processors, the

area requirement of the memories, and later on, we calculate with general technology properties.

1) Logic complexity
As the processor kernel of the cells is quite simple and compact, we can easily count their gate size

(see Table III). The size of an equivalent gate size in technology feature size depends on many things,

but let us estimated it as being 300 λ2. Hence, the processing kernel’s size is about 33,000 λ2.

Table III. Processor gate count

Unit name Gate size

Processing resources 16

Local and global connectivity 10

Crossbar switch 84

Sum 110

2) Data storage
One of the most challenging issues is the local data storage. In high performance processors, usually

they fill the silicon dies up to the manufacturable size with embedded memories, caches. The reason is

simple, the intra-chip communication can be much faster than the off-chip memory access, resulting in

23/15

higher performance. In our case, the parallel data access is also a key feature; hence, the distributed

per-cell memory structure cannot be avoided to fully explore the performance of the parallel

architecture. This implies a complete memory block for every cell, including data bit array, decoders,

read-write, and refresh mechanisms.

In general, one can choose different types of data storage in standard CMOS technology: dynamic or

static memories, binary or multilevel (that is typical in flash memories). The dynamic and multi-level

types are more compact, while the static and binary ones are more robust and do not require special

data refresh. Furthermore, as any type of memory needs the common circuitry (e.g. decoders) the

smaller array size must be favored to reduce the overall area, but with respect to the area of the

supporting circuitry.

The selection of the proper memory type is affected by its robustness. In a relatively complex array

processor, the aggregated amount of the distributed memory could easily exceed some megabits. In this

order of magnitude, the yield of a less robust architecture is below the acceptable level without hard

and soft error correction methods [22]. By the implementation of such a method the area advance of a

compact solution rapidly vanishes due to the small memory blocks.

A good compromise has been found by the 3T DRAM type. This type is definitely more compact

than the any SRAM, while it does not affected by the charge redistribution during readout. We can

estimate the size of a bit 150 λ2, while the size of an N2 bit array including dynamic row and column

selectors and the a simple precharge-evaluate readout scheme to be approximately 150 N2 + 3000 N λ2,

where λ is the general technology feature size.

B. Sensing medium
With respect to optical sensing, the optical responsibility of the CMOS technologies reaches the end

of road beyond the 0.18-0.13 micron feature size technologies [25]-[26]. This fact is due to many

reasons, the increasing number of metal layers and the dielectrics between them, the aggressive silicon

doping, high leakage current, the obscure low-Κ dielectric results in extremely low Quantum

efficiency.

The straightforward solution is the separation of sensing from the processing technology in parallel

with thigh coupling of the two entities. Although, several on-chip-surface, vertical sensor

manufacturing techniques exists (e.g. amorphous silicon grow or 3D stacked chip architectures), they

are not common and are mostly in experimental phase [27]-[28].

For easier estimates let us suppose the following dimensions for the integrated sensor-processor

architecture cases, 5x5 micron sensor area and about 1000 λ2 analog circuitry including comparator and

signal conditioning, and 7x7 micron complete size for the separated one, and 5x5 micron classic active

pixel sensor size for the foveal architecture, respectively.

C. Separated sensor and processor array
The separation solves the unique problem of tremendous mixed-signal circuit integration. For both

arrays, the most appropriate method or even technology node can be used. For the digital portion, we

can rely the above estimates and the complete separated sensor size. The size of the interconnection

(i.e. converters) between the array, supposing a compact and pitch matched structure, let be about 1000

–2000 λ height.

23/16

D. Area/Speed figures
Now, we can sum up the portions and estimate the required area for the architecture variants. In the

integrated sensor-processor architecture, the total cell area is estimated as (33,000 + 150 N2 + 3000 N +

1000) λ2 + 25 square microns, where N is the memory size of the cells and λ is the feature size. In the

separated processor array, the kernel size is (33,000 + 150 N2 + 3000 N) λ2 square microns. The

memory capacity for a cell, based on algorithmic requirements, could be limited to eight bytes (N2=64).

The ratio of the different component can be seen in Figure 13.

Figure 13. The ratio of different units in of the sensor-processor architecture.

Although, this estimates does not count with several properties of the technology scaling down (such

as feature size scales more aggressively for gate width than the other dimensions, more metal layers

available), gives an initial idea of the reachable complexity. For easier comparison, let us suppose a

1x1 cm square area for the cell array.

For the speed estimates, we must restrict ourselves to the limit of the global data throughput. As we

mentioned, the global control mechanism of continuous reconfiguration requires dozens higher

throughput rate, than the local interconnection does. Hence, the overall speed estimates cannot rely on

the local clock speed, but on the across-chip one. A first-order estimates for the maximal clock rate can

be derived from a simple time constant calculation:

2

~

λ
ρκ Ltwire ,

where ρ and κ are the resistance and capacitance per unit area, L is the wire length, λ is the metal pitch.

For the more realistic estimates, let us suppose the followings: lower 3-4 metal layers are used for local

wiring and the increasing number of higher metal layers for global routing, 20% clock skew, L= 1 cm,

low-K dielectric and Cu metallization for technologies below 0.18 micron, we get a rough clock speed

limits as shown in Table IV.

1) Integrated sensor-processor architecture
The straightforward calculations show the array size and performance results for the integrated

architecture in Table IV. Note, how the shrinking wire pitch results in lower operating frequency,

balancing the increasing array size. For comparison of this performance, the most advanced available

Texas Instruments DSP (the TMS320C6x series at 1 GHz clock speed) performs 4 GMAC@8-bit peak

performance [37], a survey can be found on specialized engines in [30].

Table IV. Area estimates for the sensor-processor architecture and 1 cm2 area

Technology Cell size [micron] Size of array Clock [MHz] Peak GMAC@8-bit

0.09 25*25 400*400 50-100 80-160

23/17

0.13 35*35 285*285 90-120 75-100

0.18 48*48 208*208 100-150 44-66

0.25 66*66 152*152 ~200* 45

In the exploration of the finer architectural possibilities, we can modify the priority between sensor

and processor resolution by share some resources between the abutted cells. As the sensory grid is a

strict constraint in the physical layout design, only a few possibilities have reality. One representative

example for the resource sharing is the increasing number of sensory block controlled by a single

processor kernel. Although, this option can significantly extend the sensory resolution, it makes the

practical design more challenging. Now, the sensory area is increased in parallel with the stored

information within a cell. The changing relative performance and resolution ratio can be seen in Figure

14. as a function of the number of sensors per cell.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9

Sensors per cells

R
el

at
iv

e
ch

an
ge

of
va

lu
es

[%
]

Array size

Number of kernels

Performance

Figure 14. Trade-off between sensory array resolution and processing performance for unit area.

2) Separated sensor and processor array architecture
The separated architecture provides several additional solutions that can be applied, which was not

available in the sensor grid restricted mixed-signal structure. These possibilities cover the hierarchical

buffering of control lines, increasing the pipeline depth and operation frequency, increasingly the

resource sharing, in general, the whole arsenal of the digital design flows.

The most relative area consuming component is the memory addressing logic that can be easily

shared by even more than one processor. In this context, we can calculate new optimums for different

resolution preferences simply by sharing the pixels (i.e. memory) by processor kernels in a similar way

then we did in the integrated case. The Figure 15. shows the changing relative properties of processor

arrays with different number of handled pixels per processor. It is worth to compare this case to the

similar evaluation of the integrated architecture. The separated architecture provides better array size

and performance scaling.

23/18

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Represented pixels per processor kernel

R
el

at
iv

e
ch

an
ge

of
va

lu
es

[%
]

Number of kernels

Array size

Performance

Figure 15. Trade-off between performance and the on-chip handled image size for unit area.

E. Foveal architecture
In the foveal architecture, as we stated, the sensory resolution is the selected priority with

significantly larger resolution than the processor array has. For this architecture, the most interesting

tradeoff is between the sensory resolution and the window/processor array ratio for unit area (see

Figure 16.). The message of this result is that a two-megapixel sensor can be integrated with a 128x128

navigating processor array into a 1 cm2 silicon area using a mainstream 0.18 micron technology.

200

400

600

800

1000

1200

1400

1600

1800

2000

80 180 280 380

Sensor array pixel width/height

Pr
oc

es
so

r
ar

ra
y

w
id

th
/h

ei
gh

t

Figure 16. Trade-off between sensor and processor array size for different technologies (0.09, 0.13, 0.18, 0.25
micron from left to right side, respectively).

F. Yield considerations
In general, with the scaling down of circuit dimensions, the manufacturing reliability, the operating

conditions dramatically worsen. With respect to the digital portion, the circuit reliability can be

mitigated by several techniques, such as robust circuit solutions, built in element redundancy and

attached self-repairing mechanisms (BISR), with a common term, by design for manufacturability.

The most challenging issue in the robust sensor-processor implementation is the preservation of the

sensing uniformity and resolution despite of any circuit redundancy and BISR solution.

For the separated architecture, as the two entity (sensor and processor array) are separated, there is

no restrictions to hold them in the silicon die. By advancing the digital portion with the manufacturing

23/19

trend, and holding the sensory system in a conservative technology, the whole system can yield a lot

from the corresponding design methods having more feasibility.

G. Conclusion
In this chapter, we have calculated some important estimates about the possible implementations of

the architectures in the mainstream technologies. We showed also, that the sensor-processor integration

interfere with the aggressive scaling down trend in the sense that the classic light sensing capability of

CMOS technology vanishes below 0.13 micron feature size. As an escape route, we analyzed the

separated processor-sensor array architecture giving guidelines for finer tradeoffs.

VI. IMPLEMENTATION STUDIES

For the verification of the analytical results, we have designed several variants of both architectures

at the 0.18 technology node (1P6M). In the examples, the goal was to satisfy some basic requirements:

regularity for abutted cell array formation, correct operation in a large array, and complete

functionality. These requirements have been verified, by backannotated parasitic simulations, some

manufactured samples, and various analyses.

The first example is for the integrated sensor-processor architecture. In this example, we have

selected that variant, where a processor kernel works with four identical sensory blocks. The sensory

block composed of n+/p-substrate photodiodes, followers and other signal conditioning circuitry, and a

comparator shared in time by the four sensors during AD conversion. The design effort was high, due

to two reasons: the high number of control lines are laid into the gaps within the sensors, resulting in a

significant crosstalk in between, furthermore, the signal routing within the cells was also a non-trivial

task again caused by the sensor pitch matching. The resulting cell area is 60*60 micron square (see

Figure 17.), pretty well in accordance to the estimations (62*62 micron). The targeted and checked

operating frequency was 100 MHz.

Figure 17. Integrated sensors and processor cell. Four sensors are shared by one processor. The size is 60*60
square micron.

23/20

The second example is an implementation of the separated sensor-processor array architecture. The

processor kernel has been designed with again strong resource sharing: four pixel data has been

denoted to a single processor, while blocks of four such processors has been grouped to share the

memory decoders. The other two elements of the architecture are the pitchmatched AD converters and

the locally controlled sensors. The AD converter is composed of a multilevel (5-bit) charge

redistribution DAC with 8-bit final resolution and a successive approximation register. The conversion

rate is a moderate 2 Mpixels/sec for each converter. The sensor is a n+/p-substrate photodiodes active

pixel sensor with electronic shutter, that is controlled by a per-pixel latch (implementation details could

be found in [20]). The Figure 18. shows the layout of the modules. In this example, the AD pitch is

double of the sensory pitch, resulting in two instances of converters per column.

Four processors macroblock representing 16 pixel data 8-bit SAR ADC Sensory block
Figure 18. The three units of the separated sensor-processor array architecture. The images are not to scale, the

real sizes are 120*120, 18*80, 9*9 square microns, respectively.

The third example of processor implementation has been prepared by not only full custom design,

but also using high capacity synthesis tools. The whole array has been clustered for 8*8 processor

blocks. Each of the blocks contains control signal pipeline stages and intra-block buffering. The

performance tradeoff of shared units is again applied in the same form as in the other examples: four

pixels are represented by a processor and four memory blocks use the same decoder logic (see Figure

19.). The resulting operation speed for a complete array is the 180 MHz (post layout, backannoted

simulation, worst case conditions). In this example the most area consuming portion, the memories, are

remained full-custom designs using 3T DRAM cells. The other elements, ADC and sensors, was the

same as in the second example.

The concluding remarks on the experiments is that first, the former estimates holds for these cases,

and second, the various design techniques and methods has been confirmed the feasibility of the

architectures.

23/21

8*8 processor array 1Kbit 3TDRAM memory block
Figure 19. A block of synthesized processor array of 64 processors representing 256 pixels (on the left side). The

black boxes are full-custom memory macros (on the right side). The technology is 0.18 micron, VST standard
cell library, the size of the block and the memory are 880*700, 85*120 micron square, respectively.

VII. CONCLUSIONS

In this paper, we presented the digital implementation method of the cellular sensor-computer. As

can be seen, the continuous, run-time, reconfiguration of the small number of bit-serial resources yields

a highly compact, but still versatile and high performance architecture. We highlighted some

interesting and distinguishing properties of the integration of sensing and processing. We showed also

that the physical separation of sensing and processing arrays with proper interconnection yields almost

equivalent performance than they tight integration.

ACKNOWLEDGMENT

This research was founded by the Grant of the National Science Fund of Hungary (OTKA), the

multidisciplinary doctoral school at the Faculty of Information Technology of the Pázmány P. Catholic

University and the Office of Naval Research (ONR) Grant No. N0001-4021-0884 and the European

Community (Grant No. IST-2001-38097 LOCUST).

REFERENCES

[1] T.Roska and L.O.Chua, “The CNN Universal Machine: An Analogic Array Computer”, IEEE Trans. Circuits and Systems,
Ser.II., vol. 40, pp. 163-173, 1993

[2] T. Roska, ”Computer-Sensors: Spatial-Temporal Computers for Analog Array Signals, Dynamically Integrated with

Sensors”, Journal of VLSI Signal Processing, Vol.23, pp.221-237, 1999

[3] T. Roska and Á. Zarándy: ”Proactive Adaptive Cellular Sensory-Computer Architecture via extending the CNN Universal

Machine”, to be published on the ECCTD ‘03 European Conference on Circuit Theory and Design, 1 - 4 September 2003,

Kraków, Poland

23/22

[4] A. El Gamal: “High Dynamic Range Image Sensors”, Tutorial at International Solid-State Circuits Conference, February

2002, Available: http://www-isl.stanford.edu/~abbas/group/papers_and_pub/isscc02_tutorial.pdf
[5] X. Q. Liu and A. El Gamal, “Photocurrent estimation from multiple nondestructive samples in a CMOS image sensor,”

SPIE2001, Proceedings, pp: 4306-4310, Jan. 2001.

[6] G. Linán, P. Földessy, S. Espejo, R. Domínguez-Castro and A. Rodríguez-Vázquez, “A 0.5µm CMOS 10^6 Transistors

Analog Programmable Array Processor for Real-Time Image Processing”. Proc. of the 25th European Solid-State Circuits
Conference , pp. 358-36, Duisburg-Germany, Sept. 1999.

[7] P.Dudek and P.J.Hicks, "A General-Purpose Processor-per-Pixel Analog SIMD Vision Chip", IEEE Transactions on
Circuits and Systems - I: Analog and Digital Signal Processing, vol. 520, no. 1, pp. 13-20, January 2005

[8] G. Linan: “ACE16K: an Advanced Focal-Plane Analog Programmable Array Processor”, ESSCIRC 2001 Presentations
27 th European Solid-State Circuits Conference, Villach, Austria, 18-20 September 2001

[9] “Bi-i Real-time Intelligent Cameras”, Analogic-computers Ltd. whitepaper, available at http://www.analogic-

computers.com/ProdServ/Bi-i

[10] T. Hamamoto and K. Aizawa: “A Computational Image Sensor with Adaptive Pixel-Based Integration Time”, IEEE
Journal of Solid State Circuits , Vol. 36. no. 4 April. 2001

[11] M. D. Grossberg and S. K. Nayar: “High Dynamic Range from Multiple Images: Which Exposures to Combine?”, Int.
Proc. ICCV Workshop on Color and Photometric Methods in Computer Vision (CPMCV), Nice, France, October 2003.

[12] S. K. Nayar and T. Mitsunaga: “High Dynamic Range Imaging: Spatially Varying Pixel Exposures”, Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition , Hilton Head Island, South Carolina, June 2000.

[13] Bolotski, M. Abacus: A Reconfigurable Bit-Parallel Architecture for Early Vision. PhD thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, 1996.

[14] Murray, A.F.; Denyer, P.B., „A CMOS Design Strategy for Bit-Serial Signal Processing”, IEEE Journal of Solid-State
Circuits , Vol 20, Issue 3, pp: 746 – 753., June 1985.

[15] J. Serra, Image Analysis and Mathematical Morphology. New York: Academic, 1982.

[16] Diamantaras, K.I.; Zimmermann, K.H.; Kung, S.Y., ”Integrated fast implementation of mathematical morphology

operations in image processing”, IEEE International Symposium on Circuits and Systems, Vol.2, pp. 1442 – 1445, 1-3 May

1990

[17] M.C. Herbordt, J.B. Cravy, R. Sam, O. Kidwai, C. Lin, “A System for Evaluating Performance and Cost of Massively

Parallel Array Designs”, Journal of Parallel and Distributed Computing, No. 60 (2), pp. 217-246.

[18] L. Wanhammar, DSP Integrated Circuits, Academic Press, 1998.

[19] R. Wagner, Á. Zarándy and T. Roska “Adaptive Perception with Locally-Adaptable Sensor Array”, IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, Vol. 51., No. 5., pp: 1014 - 1023, May 2004.

[20] A. Zarándy, P. Földesy, T. Roska, “Per-pixel integration time controlled image sensor”, European Conference on Circuit
Theory and Design , ECCTD2005, Cork, Ireland, August 31-Sept 1, 2005. accepted for publication.

[21] Ohta, A.; Isshiki, T.; Kunieda, H., „New FPGA architecture for bit-serial pipeline datapath”, IEEE Symposium on FPGAs
for Custom Computing Machines , Proceedings, pp: 58 – 67, 15-17 April 1998.

[22] Rudack, M.; Niggemeyer, D., „Yield enhancement considerations for a single-chip multiprocessor system with embedded

DRAM”, International Symposium on Defect and Fault Tolerance in VLSI Systems, DFT '99, pp 31 – 39, 1-3 Nov. 1999.

[23] Georges G. E. Gielen, Wim Dehaene, Phillip Christie, Dieter Draxelmayr, Edmond Janssens, Karen Maex, Ted

Vucurevich, “Analog and Digital Circuit Design in 65 nm CMOS: End of the Road?”, Design, Automation and Test in
Europe (DATE2005), pp. 36-42, March 7-11, Munich, Germany.

[24] Hui Tian; Fowler, B.; Gamal, A.E.,”Analysis of temporal noise in CMOS photodiode active pixel sensor”, IEEE Journal of
Solid-State Circuits , Volume 36, Issue 1, pp. 92 – 101, Jan. 2001.

[25] Peter B. Catrysse, Brian A. Wandell, „Optical efficiency of image sensor pixels”, JOSA, Volume 19, Issue 8, 1610-1620,

August 2002.

[26] El Gamal, A., “Trends in CMOS image sensor technology and design”, Electron Devices Meeting, IEDM '02, Digest.

International, pp. 805- 808, 2002.

[27] B. Schneider et al., “Image sensors in TFA (thin film on ASIC) technology,” in Handbook on Computer Vision and

Applications. Boston, MA: Academic, 1999.

23/23

[28] Stephan Benthien et al., “Vertically Integrated Sensors for Advanced Imaging Applications”, IEEE Journal of Solid-State
Circuits , Vol. 35, No. 7, pp. 939-946, July 2000.

[29] “Pixim Digital Pixel System”, Pixim Inc., 2005.

[30] Foldesy P., “Trends in design of massively parallel coprocessors implemented in digital ASICs”, IEEE International Joint
Conference on Neural Networks , Proceedings, Vol. 4, pp.: 3131 – 3135., 25-29 July 2004.

[31] Robert Johansson, Leif Lindgren, Johan Melander, and Bjrn Mller, “A Multi-Resolution 100 GOPS 4 Gpixels/s

Programmable CMOS Image Sensor for Machine Vision”, IEEE Workshop on Charge Coupled Devices And Advanced
Image Sensors , 2003.

[32] Tonia Morris, Erica Fletcher, Cyrus Afghahi, Sami Issa, Kevin Connolly, Jean-Charles Korta. "A Column-based Processing

Array for High-speed Digital Image Processing", IEEE ARVLSI, vol. 00, no. , p. 42, 20th 1999.

[33] S. Kleinfelder, SukHwan Lim, X. Liu, and A. E. Gamal,, “A 10 000 Frames/s CMOS Digital Pixel Sensor”, IEEE Journal
of Solid-State Circuits , Vol. 36, No. 12, pp. 2049- 2059., December 2001.

[34] D. Sinno, “Attentive Management of Configurable Sensor Systems”, Ph.D. thesis, Arizona State University, May 2000.

[35] L. Li, D. Cochran, and R. Martin, ”Target Tracking with an Attentive Foveal Sensor”, Conference Record of the Thirty-
Fourth Asilomar Conference on Signals, Systems and Computers, pp. 182-185, 2000.

[36] Rekeczky, C.; Szatmari, I.; Balya, D.; Timar, G.; Zarandy, A., “Cellular multiadaptive analogic architecture: a

computational framework for UAV applications”, IEEE Transactions on Circuits and Systems I, Volume 51, Issue 5, pp.

864 – 884., May 2004.

[37] www.ti.com

