50 research outputs found

    Impacts of climate change and water resources development on the declining inflow into Iran's Urmia Lake

    Get PDF
    Urmia Lake, the world's second largest hypersaline lake, has decreased in size over recent decades primarily because inflow has diminished. This has caused serious socio-environmental consequences similar to those of the Aral Sea disaster. By using the variable infiltration capacity (VIC) model, this study estimates the relative contributions of climate change and water resources development, which includes the construction of reservoirs and expansion of irrigated areas, to changes in Urmia Lake inflow over the period 1960–2010. The model results show that decreases in inflow generally follow observed decreases in precipitation, although the variability in inflow is more pronounced than the variability in precipitation. The results also suggest that water use for irrigation has increased pressure on the basin's water availability and has caused flows to decrease by as much as 40% during dry years. On the other hand, the presence of reservoirs positively contributed to water availability during relatively dry years and did not significantly reduce lake inflow. By accelerating irrigation expansion in the basin, reservoirs have, however indirectly, contributed to inflow reduction. Our results show that annual inflow to Urmia Lake has dropped by 48% over the study period. About three fifths of this change was caused by climate change and about two fifths was caused by water resource development. The results of this study show that, to prevent further desiccation of Urmia Lake, it will be necessary both to develop national plans to reduce irrigation water use and to develop international plans to address climate change

    HESS Opinions: Drought impacts as failed prospects

    Get PDF
    Human actions induce and modify droughts. However, scientific gaps remain with respect to how hydrological processes, anthropogenic dynamics, and individuals' perceptions of impacts are intrinsically entangled in drought occurrence and evolution. This adds complexity to drought assessment studies that cannot be addressed by the natural and environmental sciences alone. Furthermore, it poses a challenge with respect to developing ways to evaluate human behaviour and its pattern of co-evolution with the hydrological cycle – mainly related to water use and landscape modifications. During fieldwork in Brazil, we observed how drought impacts were experienced by people who were exposed to a multi-year drought. Evaluating our data, it appeared that prospect theory, a behavioural economic theory that is usually applied to explain decision-making processes under uncertainty, has explanatory power regarding what we observed in the field. Therefore, we propose an interdisciplinary approach to improve the understanding of drought impact emergence using this theory. When employing prospect theory in this context, drought impacts are considered failed welfare expectations (“prospects”) due to water shortage. A shifting baseline after prolonged exposure to drought can therefore mitigate experienced drought impacts. We demonstrate that this theory can also contribute to explaining socio-hydrological phenomena, such as reservoir effects. This new approach can help bridge natural science and social science perspectives, resulting in integrated drought management that considers the local context.</p

    Is the water footprint an appropriate tool for forestry and forest products: The Fennoscandian case

    Get PDF
    The water footprint by the Water Footprint Network (WF) is an ambitious tool for measuring human appropriation and promoting sustainable use of fresh water. Using recent case studies and examples from water-abundant Fennoscandia, we consider whether it is an appropriate tool for evaluating the water use of forestry and forest-based products. We show that aggregating catchment level water consumption over a product life cycle does not consider fresh water as a renewable resource and is inconsistent with the principles of the hydrologic cycle. Currently, the WF assumes that all evapotranspiration (ET) from forests is a human appropriation of water although ET from managed forests in Fennoscandia is indistinguishable from that of unmanaged forests. We suggest that ET should not be included in the water footprint of rain-fed forestry and forest-based products. Tools for sustainable water management should always contextualize water use and water impacts with local water availability and environmental sensitivity

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come

    Integrated Assessment of Water Stress in Ceará, Brazil, under Climate Change Forcing

    No full text
    Abstract: Surface water is the main source of fresh water supply in Ceará, lying in the semi-arid Northeast o
    corecore