186 research outputs found

    Agro-materials : a bibliographic review

    Get PDF
    Facing the problems of plastic recycling and fossil resources exhaustion, the use of biomass to conceive new materials appears like a reasonable solution. Two axes of research are nowadays developed : on the one hand the synthesis of biodegradable plastics, whichever the methods may be, on the other hand the utilization of raw biopolymers, which is the object of this paper. From this perspective, the “plastic” properties of natural polymers, the caracteristics of the different classes of polymers, the use of charge in vegetable matrix and the possible means of improving the durability of these agro-materials are reviewed

    A Massively Parallel Sequencing Approach Uncovers Ancient Origins and High Genetic Variability of Endangered Przewalski's Horses

    Get PDF
    The endangered Przewalski's horse is the closest relative of the domestic horse and is the only true wild horse species surviving today. The question of whether Przewalski's horse is the direct progenitor of domestic horse has been hotly debated. Studies of DNA diversity within Przewalski's horses have been sparse but are urgently needed to ensure their successful reintroduction to the wild. In an attempt to resolve the controversy surrounding the phylogenetic position and genetic diversity of Przewalski's horses, we used massively parallel sequencing technology to decipher the complete mitochondrial and partial nuclear genomes for all four surviving maternal lineages of Przewalski's horses. Unlike single-nucleotide polymorphism (SNP) typing usually affected by ascertainment bias, the present method is expected to be largely unbiased. Three mitochondrial haplotypes were discovered—two similar ones, haplotypes I/II, and one substantially divergent from the other two, haplotype III. Haplotypes I/II versus III did not cluster together on a phylogenetic tree, rejecting the monophyly of Przewalski's horse maternal lineages, and were estimated to split 0.117–0.186 Ma, significantly preceding horse domestication. In the phylogeny based on autosomal sequences, Przewalski's horses formed a monophyletic clade, separate from the Thoroughbred domestic horse lineage. Our results suggest that Przewalski's horses have ancient origins and are not the direct progenitors of domestic horses. The analysis of the vast amount of sequence data presented here suggests that Przewalski's and domestic horse lineages diverged at least 0.117 Ma but since then have retained ancestral genetic polymorphism and/or experienced gene flow

    Mystify me: Coke, terror and the symbolic immortality boost

    Get PDF
    A panel on “Marketing as Mystification” convened at the 2011 Academy of Marketing conference in Liverpool. Ideas from the Liverpool event were supplemented by commentaries from selected other authors. Each commentary explores the aspects of “mystification” observable in marketing discourses and practices. In what follows, Laufer interprets marketing mystification as modern form of sophism, Dholakia and Firat discuss mystifying ways that inequality is marketed, Varman analyzes the perversion and mystification of “development” via neoliberal marketing of “social entrepreneurship,” Mikkonen explores mystifying marketing representations of gays and lesbians, and Freund and Jacobi present a fascinating interpretation of how Coca-Cola advertising mystically reassures us that our difficult, dangerous lifeworld is actually quite hunky-dory. </jats:p

    Uncoupling of Satellite DNA and Centromeric Function in the Genus Equus

    Get PDF
    In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs

    A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies

    Get PDF
    An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species

    Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations.</p> <p>Results</p> <p>We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), <it>DRA </it>and <it>DQA</it>, in the genus <it>Equus </it>with the addition of novel alleles identified in plains zebra (<it>E. quagga</it>, formerly <it>E. burchelli</it>). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, <it>DRA </it>allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the <it>DQA </it>locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (<it>d</it><sub>N</sub><it>/d</it><sub>S</sub>) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (<it>d</it><sub>N </sub><<it>d</it><sub>S</sub>). However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the <it>DQA</it>, supported the hypothesis of positive selection acting on specific sites.</p> <p>Conclusions</p> <p>Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the <it>DQA</it>, positive selection was occurring at antigen binding sites, suggesting that a few selected residues may play a significant role in equid immune function. Future studies in natural equid populations will be valuable for understanding the functional significance of the uniquely diverse <it>DRA </it>locus and for elucidating the mechanism maintaining diversity at these MHC loci.</p

    A mobile ELF4 delivers circadian temperature information from shoots to roots

    Get PDF
    Extended Data and Source Data can be found at https://doi.org/10.1038/s41477-020-0634-2Ajuts: the Mas laboratory is funded by the FEDER/Spanish Ministry of Economy and Competitiveness, the Ramon Areces Foundation and the Generalitat de Catalunya (AGAUR). The P.M. laboratory also acknowledges financial support from the CERCA Program, Generalitat de Catalunya and by the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa Program for Centers of Excellence in R&D 2016-2019 (SEV-2015-0533).The circadian clock is synchronized by environmental cues, mostly by light and temperature. Explaining how the plant circadian clock responds to temperature oscillations is crucial to understanding plant responsiveness to the environment. Here, we found a prevalent temperature-dependent function of the Arabidopsis clock component EARLY FLOWERING 4 (ELF4) in the root clock. Although the clocks in roots are able to run in the absence of shoots, micrografting assays and mathematical analyses show that ELF4 moves from shoots to regulate rhythms in roots. ELF4 movement does not convey photoperiodic information, but trafficking is essential for controlling the period of the root clock in a temperature-dependent manner. Low temperatures favour ELF4 mobility, resulting in a slow-paced root clock, whereas high temperatures decrease movement, leading to a faster clock. Hence, the mobile ELF4 delivers temperature information and establishes a shoot-to-root dialogue that sets the pace of the clock in root

    A Gene Catalogue of the Euchromatic Male-Specific Region of the Horse Y Chromosome: Comparison with Human and Other Mammals

    Get PDF
    Studies of the Y chromosome in primates, rodents and carnivores provide compelling evidence that the male specific region of Y (MSY) contains functional genes, many of which have specialized roles in spermatogenesis and male-fertility. Little similarity, however, has been found between the gene content and sequence of MSY in different species. This hinders the discovery of species-specific male fertility genes and limits our understanding about MSY evolution in mammals. Here, a detailed MSY gene catalogue was developed for the horse – an odd-toed ungulate. Using direct cDNA selection from horse testis, and sequence analysis of Y-specific BAC clones, 37 horse MSY genes/transcripts were identified. The genes were mapped to the MSY BAC contig map, characterized for copy number, analyzed for transcriptional profiles by RT-PCR, examined for the presence of ORFs, and compared to other mammalian orthologs. We demonstrate that the horse MSY harbors 20 X-degenerate genes with known orthologs in other eutherian species. The remaining 17 genes are acquired or novel and have so far been identified only in the horse or donkey Y chromosomes. Notably, 3 transcripts were found in the heterochromatic part of the Y. We show that despite substantial differences between the sequence, gene content and organization of horse and other mammalian Y chromosomes, the functions of MSY genes are predominantly related to testis and spermatogenesis. Altogether, 10 multicopy genes with testis-specific expression were identified in the horse MSY, and considered likely candidate genes for stallion fertility. The findings establish an important foundation for the study of Y-linked genetic factors governing fertility in stallions, and improve our knowledge about the evolutionary processes that have shaped Y chromosomes in different mammalian lineages
    corecore