134 research outputs found

    Development of an innovative method for the evaluation of fungal contamination of surfaces

    Get PDF
    The objective of this technical report is to compare the ability to capture fungal spores through samples performed with three different methods: Rodac contact plates, cotton pad and a pad prepared with a dusting cloth (DC pads) selected from those available on the market. The tests were conducted using a suspension of Aspergillus niger conidia equal to 0.5 MacFarland diluted 1/30, 1/40, 1/50, 1/100. With each of these dilutions 3 sterile tiles of stainless steel were contaminated, each divided into 16 small squares, in the center of which 0.1 ml of the dilution chosen was placed and left to dry (for a total of 12 sheets). In addition, we have used other 6 tiles to repeat the experience with dilutions 1/40 and 1/50. A total of 288 squared surfaces were contaminated: 96 of these were sampled with Rodac contact plates, 96 with cotton pads and 96 with DC and then inseminated in Petri plates. Sabouraud dextrose agar was used as culture medium for the first 12 plates, while, for the other 6 plates Sabouraud dextrose agar added with lecithin and polysorbate 80 was used. All plates were incubated at 37 degrees for 18 hours. To estimate the differences among the sampling methods and the dilutions tested, multiple linear regression was used. The analysis showed that the number of colonies harvested at dilution 1/40 is 13% higher (P = 0.09) than the number harvested at dilution 1/50 and the number of colonies harvested at dilution 1/30 is 6% higher than dilution 1/50 (P = 0.52). With regard to the comparison between the number of colonies harvested with Rodac contact plates, with cotton pads and DC pads, regression analysis shows that cotton pads harvest a number of fungal cfu 5 times higher than those detected with Rodac plates, while DC pads harvest a number of fungal ufc 6 times higher than those detected with Rodac plates (P < 0.00005). These results, although preliminary, indicate that DC pads are a sensitive and simple approach for the environmental control of fungal contamination

    Fetal and early neonatal interleukin-6 response

    Get PDF
    In 1998, a systemic fetal cytokine response, defined as a plasma interleukin-6 (IL-6) value above 11 pg/mL, was reported to be a major independent risk factor for the subsequent development of neonatal morbid events even after adjustments for gestational age and other confounders. Since then, the body of literature investigating the use of blood concentrations of IL-6 as a hallmark of the fetal inflammatory response syndrome (FIRS), a diagnostic marker of early-onset neonatal sepsis (EONS) and a risk predictor of white matter injury (WMI), has grown rapidly. In this article, we critically review: IL-6 biological functions; current evidence on the association between IL-6, preterm birth, FIRS and EONS; IL-6 reference intervals and dynamics in the early neonatal period; IL-6 response during the immediate postnatal period and perinatal confounders; accuracy and completeness of IL-6 diagnostic studies for EONS (according to the Standards for Reporting of Diagnostic Accuracy statement); and recent breakthroughs in the association between fetal blood IL-6, EONS, and WMI

    Early-onset neonatal sepsis: Still room for improvement in procalcitonin diagnostic accuracy studies

    Get PDF
    To perform a systematic review assessing accuracy and completeness of diagnostic studies of procalcitonin (PCT) for early-onset neonatal sepsis (EONS) using the Standards for Reporting of Diagnostic Accuracy (STARD) initiative.EONS, diagnosed during the first 3 days of life, remains a common and serious problem. Increased PCT is a potentially useful diagnostic marker of EONS, but reports in the literature are contradictory. There are several possible explanations for the divergent results including the quality of studies reporting the clinical usefulness of PCT in ruling in or ruling out EONS.We systematically reviewed PubMed, Scopus, and the Cochrane Library databases up to October 1, 2014. Studies were eligible for inclusion in our review if they provided measures of PCT accuracy for diagnosing EONS. A data extraction form based on the STARD checklist and adapted for neonates with EONS was used to appraise the quality of the reporting of included studies.We found 18 articles (1998-2014) fulfilling our eligibility criteria which were included in the final analysis. Overall, the results of our analysis showed that the quality of studies reporting diagnostic accuracy of PCT for EONS was suboptimal leaving ample room for improvement. Information on key elements of design, analysis, and interpretation of test accuracy were frequently missing.Authors should be aware of the STARD criteria before starting a study in this field. We welcome stricter adherence to this guideline. Well-reported studies with appropriate designs will provide more reliable information to guide decisions on the use and interpretations of PCT test results in the management of neonates with EONS

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space

    Get PDF
    The NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL; https://anvilproject.org) was developed to address a widespread community need for a unified computing environment for genomics data storage, management, and analysis. In this perspective, we present AnVIL, describe its ecosystem and interoperability with other platforms, and highlight how this platform and associated initiatives contribute to improved genomic data sharing efforts. The AnVIL is a federated cloud platform designed to manage and store genomics and related data, enable population-scale analysis, and facilitate collaboration through the sharing of data, code, and analysis results. By inverting the traditional model of data sharing, the AnVIL eliminates the need for data movement while also adding security measures for active threat detection and monitoring and provides scalable, shared computing resources for any researcher. We describe the core data management and analysis components of the AnVIL, which currently consists of Terra, Gen3, Galaxy, RStudio/Bioconductor, Dockstore, and Jupyter, and describe several flagship genomics datasets available within the AnVIL. We continue to extend and innovate the AnVIL ecosystem by implementing new capabilities, including mechanisms for interoperability and responsible data sharing, while streamlining access management. The AnVIL opens many new opportunities for analysis, collaboration, and data sharing that are needed to drive research and to make discoveries through the joint analysis of hundreds of thousands to millions of genomes along with associated clinical and molecular data types

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Prevention of coronary disease in the presence of other chronic diseases:blood pressure monitoring.

    No full text
    corecore