6,086 research outputs found
The dynamics of apparent horizons in Robinson-Trautman spacetimes
We present an alternative scheme of finding apparent horizons based on
spectral methods applied to Robinson-Trautman spacetimes. We have considered
distinct initial data such as representing the spheroids of matter and the
head-on collision of two non-rotating black holes. The evolution of the
apparent horizon is presented. We have obtained in some cases a mass gap
between the final Bondi and apparent horizon masses, whose implications were
briefly commented in the light of the thermodynamics of black holes.Comment: 9 pages, 7 figure
Simulations of extensional flow in microrheometric devices
We present a detailed numerical study of the flow of a Newtonian fluid through microrheometric devices featuring a sudden contraction–expansion. This flow configuration is typically used to generate extensional deformations and high strain rates. The excess pressure drop resulting from the converging and diverging flow is an important dynamic measure to quantify if the device is intended to be used as a microfluidic extensional rheometer. To explore this idea, we examine the effect of the contraction length, aspect ratio and Reynolds number on the flow kinematics and resulting pressure field. Analysis of the computed velocity and pressure fields show that, for typical experimental conditions used in microfluidic devices, the steady flow is highly three-dimensional with open spiraling vortical structures in the stagnant corner regions. The numerical simulations of the local kinematics and global pressure drop are in good agreement with experimental results. The device aspect ratio is shown to have a strong impact on the flow and consequently on the excess pressure drop, which is quantified in terms of the dimensionless Couette and Bagley correction factors. We suggest an approach for calculating the Bagley correction which may be especially appropriate for planar microchannels
Mobility deficit – Rehabilitate, an opportunity for functionality
There are many pathological conditions that cause mobility deficits and that ultimately influence someone’s autonomy.Aims: to evaluate patients with mobility deficits functional status; to implement a Rehabilitation Nursing intervention plan; to monitor health gains through mobility deficits rehabilitation.Conclusion: Early intervention and the implementation of a nursing rehabilitation intervention plan results in health gains (direct or indirect), decreases the risk of developing Pressure Ulcers (PU) and the risk of developing a situation of immobility that affects patients’ autonomy and quality of life
The role of evolutive elastic properties in the performance of a sheet formed spring applied in multimedia car industry
The manufacturing process and the behavior of a sheet formed spring manufactured from an aluminum sheet is described and investigated in this work considering the specifications for the in-service conditions. The sheet formed spring is intended to be applied in car multimedia industry to replace bolted connections. Among others, are investigated the roles of the constitutive parameters and the hypothesis of evolutive elastic properties with the plastic work in the multi-step forming process and in working conditions.This research was sponsored by:a) Portugal Incentive System for Research and Technological Development. Project in co-promotion no 36265/2013 (Project HMIExcel - 2013-2015), andb) FCT with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio
Vulnerability of Brazilian municipalities to hantavirus infections based on multi‑criteria decision analysis
Background: Hantavirus infection is an emerging zoonosis transmitted by wild rodents. In Brazil, high case-fatality rates among humans infected with hantavirus are of serious concern to public health authorities. Appropriate preventive measures partly depend on reliable knowledge about the geographical distribution of this disease. Methods: Incidence of hantavirus infections in Brazil (1993–2013) was analyzed. Epidemiological, socioeconomic, and demographic indicators were also used to classify cities’ vulnerability to disease by means of multi-criteria decision analysis (MCDA). Results: From 1993 to 2013, 1752 cases of hantavirus were registered in 16 Brazilian states. The highest incidence of hantavirus was observed in the states of Mato Grosso (0.57/100,000) and Santa Catarina (0.13/100,000). Based on MCDA analysis, municipalities in the southern, southeastern, and midwestern regions of Brazil can be classified as highly vulnerable. Most municipalities in northern and northeastern Brazil were classified as having low vulnerability to hantavirus cardiopulmonary syndrome. Conclusions: Although most human infections by hantavirus registered in Brazil occurred in the southern region of the country, a greater vulnerability to hantavirus was found in the Brazilian Midwest. This result reflects the need to strengthen surveillance where the disease has thus far gone unreported
Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming
BACKGROUND: Although chronic morbidity in humans from soil transmitted helminth (STH) infections can be reduced by anthelmintic treatment, inconsistent diagnostic tools make it difficult to reliably measure the impact of deworming programs and often miss light helminth infections. METHODS: Cryopreserved stool samples from 796 people (aged 2-81 years) in four villages in Bungoma County, western Kenya, were assessed using multi-parallel qPCR for 8 parasites and compared to point-of-contact assessments of the same stools by the 2-stool 2-slide Kato-Katz (KK) method. All subjects were treated with albendazole and all Ascaris lumbricoides expelled post-treatment were collected. Three months later, samples from 633 of these people were re-assessed by both qPCR and KK, re-treated with albendazole and the expelled worms collected. RESULTS: Baseline prevalence by qPCR (n = 796) was 17 % for A. lumbricoides, 18 % for Necator americanus, 41 % for Giardia lamblia and 15% for Entamoeba histolytica. The prevalence was <1% for Trichuris trichiura, Ancylostoma duodenale, Strongyloides stercoralis and Cryptosporidium parvum. The sensitivity of qPCR was 98% for A. lumbricoides and N. americanus, whereas KK sensitivity was 70% and 32%, respectively. Furthermore, qPCR detected infections with T. trichiura and S. stercoralis that were missed by KK, and infections with G. lamblia and E. histolytica that cannot be detected by KK. Infection intensities measured by qPCR and by KK were correlated for A. lumbricoides (r = 0.83, p < 0.0001) and N. americanus (r = 0.55, p < 0.0001). The number of A. lumbricoides worms expelled was correlated (p < 0.0001) with both the KK (r = 0.63) and qPCR intensity measurements (r = 0.60). CONCLUSIONS: KK may be an inadequate tool for stool-based surveillance in areas where hookworm or Strongyloides are common or where intensity of helminth infection is low after repeated rounds of chemotherapy. Because deworming programs need to distinguish between populations where parasitic infection is controlled and those where further treatment is required, multi-parallel qPCR (or similar high throughput molecular diagnostics) may provide new and important diagnostic information
Astrobiological Complexity with Probabilistic Cellular Automata
Search for extraterrestrial life and intelligence constitutes one of the
major endeavors in science, but has yet been quantitatively modeled only rarely
and in a cursory and superficial fashion. We argue that probabilistic cellular
automata (PCA) represent the best quantitative framework for modeling
astrobiological history of the Milky Way and its Galactic Habitable Zone. The
relevant astrobiological parameters are to be modeled as the elements of the
input probability matrix for the PCA kernel. With the underlying simplicity of
the cellular automata constructs, this approach enables a quick analysis of
large and ambiguous input parameters' space. We perform a simple clustering
analysis of typical astrobiological histories and discuss the relevant boundary
conditions of practical importance for planning and guiding actual empirical
astrobiological and SETI projects. In addition to showing how the present
framework is adaptable to more complex situations and updated observational
databases from current and near-future space missions, we demonstrate how
numerical results could offer a cautious rationale for continuation of
practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo
Numerical and experimental analysis of wrinkling during the cup drawing of an AA5042 aluminium alloy
The recent trend to reduce the thickness of metallic sheets used in forming processes strongly increases the likelihood of the occurrence of wrinkling. Thus, in order to obtain defect-free components, the prediction of this kind of defect becomes extremely important in the tool design and selection of process parameters. In this study, the sheet metal forming process proposed as a benchmark in the Numisheet 2014 conference is selected to analyse the influence of the tool geometry on wrinkling behaviour, as well as the reliability of the
developed numerical model. The side-wall wrinkling during the deep drawing process of a cylindrical cup in AA5042 aluminium alloy is investigated through finite element simulation and experimental measurements. The material plastic anisotropy is modelled with an advanced yield criterion beyond the isotropic (von Mises) material behaviour. The results show that the shape of the wrinkles predicted by the numerical model is strongly affected by the finite element mesh used in the blank discretization. The accurate modelling of the plastic anisotropy of the aluminium alloy yields numerical results that are in good agreement with the experiments, particularly the shape and location of the wrinkles. The predicted punch force evolution is strongly influenced by the friction coefficient used in the model. Moreover, the two punch geometries provide drawn cups with different wrinkle waves, mainly differing in amplitude.The authors gratefully acknowledge the financial support of the Portuguese Foundation for Science and Technology (FCT) under project PTDC/EMS-TEC/1805/2012. The first author is also grateful to the FCT for the Postdoctoral grant SFRH/BPD/101334/2014 and P.D. Barros is grateful to the FCT for the PhD Grant SFRH/BD/98545/2013info:eu-repo/semantics/publishedVersio
Numerical modeling of the thermal contact in metal forming processes
Heat flow across the interface of solid bodies in
contact is an important aspect in several engineering applications.
This work presents a finite element model for the
analysis of thermal contact, which takes into account the
effect of contact pressure and gap dimension in the heat
flow across the interface between two bodies. Additionally,
the frictional heat generation is also addressed, which
is dictated by the contact forces predicted by the mechanical
problem. The frictional contact problem and thermal
problem are formulated in the frame of the finite element
method. A new law is proposed to define the interfacial heat
transfer coefficient (IHTC) as a function of the contact pressure
and gap distance, enabling a smooth transition between
two contact status (gap and contact). The staggered scheme
used as coupling strategy to solve the thermomechanical
problem is briefly presented. Four numerical examples are presented to validate the finite element model and highlight
the importance of the proposed law on the predicted
temperature.The authors gratefully acknowledge the financial
support of the Portuguese Foundation for Science and Technology
(FCT) under the project PTDC/EMS-TEC/1805/2012 and by
FEDER funds through the program COMPETE Programa Operacional
Factores de Competitividade, under the project CENTRO-07-0224-
FEDER-002001 (MT4MOBI). The second author is also grateful to the
FCT for the postdoctoral grant SFRH/BPD/101334/2014. The authors
would like to thank Prof. A. Andrade-Campos for helpful contributions
on the development of the finite element code presented in this work.info:eu-repo/semantics/publishedVersio
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
