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Abstract We present a detailed numerical study of the

flow of a Newtonian fluid through microrheometric devices

featuring a sudden contraction–expansion. This flow con-

figuration is typically used to generate extensional

deformations and high strain rates. The excess pressure drop

resulting from the converging and diverging flow is an

important dynamic measure to quantify if the device is

intended to be used as a microfluidic extensional rheometer.

To explore this idea, we examine the effect of the con-

traction length, aspect ratio and Reynolds number on the

flow kinematics and resulting pressure field. Analysis of the

computed velocity and pressure fields show that, for typical

experimental conditions used in microfluidic devices, the

steady flow is highly three-dimensional with open spiraling

vortical structures in the stagnant corner regions. The

numerical simulations of the local kinematics and global

pressure drop are in good agreement with experimental

results. The device aspect ratio is shown to have a strong

impact on the flow and consequently on the excess pressure

drop, which is quantified in terms of the dimensionless

Couette and Bagley correction factors. We suggest an

approach for calculating the Bagley correction which may

be especially appropriate for planar microchannels.

Keywords Microfluidics � Microrheometry �
Couette correction � Bagley correction �
Contraction–expansion flow � Extensional flow

1 Introduction

Over the past decade, microfluidic devices have emerged as

a powerful toolset for miniaturization and automation of

fluid handling and fluid analysis (Whitesides 2006), sig-

nificantly reducing the time and cost involved in diagnostic

procedures. The numerous advantages of microfluidics,

namely the reduced amounts of sample and reagents nee-

ded, the high surface-to-volume ratio, the substantial waste

reduction, the low cost of fabrication and the possibility of

producing highly integrated and disposable devices, have

stimulated remarkable interest and unraveled an extensive

range of applications. As a result of the fabrication meth-

ods employed, micro-devices are typically composed of a

series of planar channels and many of the geometries used

involve changes in the cross-sectional flow area (Lee et al.

2002). For this reason, understanding the fluid dynamics in

prototypical configurations, such as the planar contraction–

expansion, is of utmost importance.
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Viscous flow through contractions (planar and axisym-

metric) is a long-standing numerical benchmark problem,

particularly for viscoelastic fluids (Hassager 1988; Brown

and McKinley 1994; Owens and Phillips 2002). This type of

flow results in streamwise acceleration and is of particular

importance in polymer processing applications, such as

injection molding, spinning and film blowing (Barnes et al.

1989). The flow through sudden contractions, including the

complex effects of flow geometry and fluid rheology on the

flow characteristics, has been the subject of thorough reviews

by Boger (1987) and White et al. (1987). More recent results

(numerical and experimental) can be found in the book by

Owens and Phillips (2002) and the introductions of Alves

et al. (2005), Rodd et al. (2005) and Oliveira et al. (2007b).

The ultimate goal of this research is to develop an

efficient microfluidic ‘‘rheometer-on-a-chip’’ capable of

achieving high strain rates, in such a way that it can be used

to measure the effective extensional properties of dilute

polymeric solutions and low viscosity complex fluids (e.g.

inks, coating fluids, DNA solutions, blood). In this paper

we investigate the flow of a Newtonian fluid (distilled

water) through a microfabricated geometry containing a

planar contraction–expansion section. We combine exper-

imental measurements with numerical computations to

obtain accurate velocity profiles, flow patterns and recir-

culation sizes as well as pressure drop results. As we show

below, excellent agreement can be obtained between the

experimental and numerical techniques, validating the use

of future numerical computations as an exploratory design

tool. The present study is a starting point for a more in-

depth experimental and numerical study of the flow of

viscoelastic fluids in these types of micro-geometries.

However, as we shall demonstrate, even for a simple

Newtonian fluid the flow in such a device can be complex

and is yet to be completely understood.

1.1 Fluid physics of converging entry flows

Even though the geometry is simple, converging entry flows

show complex flow patterns that feature both shearing and

elongational regions: near the walls the flow is shear-dom-

inated, whereas along the centerline it is predominantly

extensional and essentially shear-free (Rothstein and

McKinley 2001; Alves and Poole 2007). In this geometry

the flow can exhibit quite complex behavior, even for lam-

inar flows of Newtonian fluids (e.g. Fearn et al. 1990; Hawa

and Rusak 2001; Mishra and Jayaraman 2002; Oliveira

2003) resulting in either symmetric or asymmetric flow

patterns downstream of the expansion plane, depending on

the value of the Reynolds number and on the geometrical

characteristics of the device (Battaglia et al. 1997).

At the microscale, entry flows are also important in many

industrial applications, ranging from inkjet printing to

micro-injection molding. These processes usually involve a

strong extensional component: for example, inkjet printing,

which is a high volume commercial industry, depends on

the extensional flow of slightly elastic non-Newtonian fluids

at the microscale (Oliveira et al. 2006; Tuladhar and

Mackley 2008). The small length-scales of the geometries

usually result in a range of Reynolds numbers well within

the laminar flow regime. Furthermore, entry flows at the

microscale are typically characterized by large contraction

ratios, and thus both the extensional deformation rate and

the total extensional strain are high. Consequently, a large

additional pressure drop (or ‘‘extra pressure drop’’) at the

converging entrance is observed, even for Newtonian fluids,

and this can be related to the extensional properties of the

solution (Kang et al. 2005). A microfluidic geometry con-

sisting of an abrupt contraction followed by an abrupt

expansion may thus be used in order to determine an

apparent extensional viscosity of dilute polymer solutions

from pressure drop measurements in micro-contractions

(Rodd et al. 2005). The underlying idea is to use streamwise

acceleration of the fluid in the throat in order to achieve a

local planar elongational flow in the core of the converging

section, such that the velocity increases linearly toward the

throat. If the contraction–expansion geometry is abrupt,

spatially inhomogeneous extensional behavior is observed

in the entrance region, and this can make it difficult to

identify a region of constant strain rate. The resulting

material coefficient is therefore most accurately described

as an ‘‘apparent extensional viscosity’’ (Rodd et al. 2005).

Nonetheless, these microfluidic contraction–expansion

flows are extensionally dominated and therefore important

information can still be extracted from differential pressure

measurements in a similar fashion to that performed in

conventional contraction geometries (Cogswell 1972a, b;

James et al. 1990; Binding et al. 1998).

At the macroscale, the major flow pattern typical of

Newtonian fluid flow through planar contraction geometries

is the formation of an upstream Moffatt vortex (Moffatt

1964), close to the corner, which gradually diminishes as

the effects of fluid inertia increase. For Newtonian fluids,

the most interesting dynamical features of this flow take

place in the expansion region. Early experimental studies of

laminar flows through macroscale planar channels with a

sudden expansion (Durst et al. 1974; Cherdron et al. 1978),

revealed the existence of two recirculation regions of equal

size downstream of the expansion for low Reynolds number

flows. As the Reynolds number is increased, symmetry

about the centerline is initially maintained and the recir-

culation length increases progressively (Durst et al. 1974;

Cherdron et al. 1978). However, above a certain value of the

Reynolds number, a supercritical bifurcation is observed

and one recirculation zone expands while the other shrinks

as the Reynolds number is further increased (Drikakis 1997;
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Revuelta 2005). Despite this asymmetry, the flow remains

temporally steady for a certain range of Reynolds number

(Mishra and Jayaraman 2002). This phenomenon, in which

stable asymmetric vortices are formed, is seen in 2D planar

expansions and is frequently attributed to the Coanda effect

(Wille and Fernholz 1965). Infinitesimal perturbations of

the velocity field cause the flow to be shifted to one side of

the expansion, generating a velocity increase near one wall

and a corresponding pressure decrease near that same wall.

As a result, the flow asymmetry is likely to be maintained

once the resulting pressure difference is established. The

pattern of vortex development and growth has been

observed experimentally and confirmed by a series of

numerical studies. The numerical computations of Sobey

and Drazin (1986) and Fearn et al. (1990) together with the

linear stability analysis of Shapira et al. (1990) indicate that

this behavior occurs as a result of a bifurcation in the

solution of the Navier–Stokes equations, i.e. above a critical

Reynolds number two symmetric stable solutions co-exist

(Battaglia et al. 1997). Hawa and Rusak (2001) explain the

loss of symmetric stability as a result of the interaction

between the effects of viscous dissipation, the downstream

convection of perturbations by the base symmetric flow, and

the upstream convection induced by 2D asymmetric

disturbances.

Oliveira (2003) predicted that, for Newtonian fluids in a

1:3 planar 2D expansion, the flow becomes asymmetric

above a critical Reynolds number of Rec & 54. This result

is in good agreement with previous works (Shapira et al.

1990; Fearn et al. 1990; Drikakis 1997; Mishra and

Jayaraman 2002). However this critical Reynolds number

is found to depend strongly on the expansion ratio, wd/wc,

where wc and wd are the small and large channel widths,

respectively (Drikakis 1997; Revuelta 2005). Drikakis

(1997) performed a numerical study of the laminar flow

through sudden expansions with varying expansion ratios

and found that the critical Reynolds number decreases with

increasing expansion ratio and that the asymmetries

become stronger with increasing Reynolds number. Fur-

thermore, in 3D geometries, the critical Reynolds number

varies with the aspect ratio, AR = h/wc, where h is the

depth of the channel in the ‘‘neutral’’ direction (Cherdron

et al. 1978; Chiang et al. 2000).

An important difference in nomenclature must be noted

here: at macroscales, a ‘‘planar geometry’’ commonly

refers to flow cells with large aspect ratios (AR [[ 1)

which are commonly used to approximate a 2D planar

flow, i.e. the depth of the channel is designed to be large

(h/wc [[ 1) so that the effects of the endwalls are negli-

gible. When the aspect ratio decreases, the effects of the

endwalls increase; in expansion flows, for example, the

critical Reynolds number for the bifurcation increases, and

eventually the flow patterns observed experimentally no

longer become asymmetric at large Reynolds numbers

(Chiang et al. 2000). For moderate aspect ratios, the flow is

steady in time but highly three-dimensional, and complex

spiraling structures are observed, which are not closed re-

circulating cells as in the case of ideal 2D expansion flows.

By contrast, in lithographic microfabrication techniques,

the term ‘‘planar geometry’’ typically refers to devices in

which the depth, h, of the flow channel is kept constant

throughout the device and variations to the cross-sectional

flow area (such as a contraction and/or expansion) occur

only in the flow direction. This typically leads to aspect

ratios close to unity in the contraction region (AR =

h/wc = O(1)) and much smaller aspect ratios upstream and

downstream of the region of interest (h/wd \\ 1). Steady

viscous flow in microfluidic devices should thus be

expected to be three-dimensional in nature. Tsai et al.

(2006) examined numerically the flow of Newtonian fluids

through microfabricated planar expansions and found that

the flow only resembles a 2D flow for very high aspect

ratios (AR [[ 1); otherwise near the expansion plane the

flow is locally 3D. The theoretical study of Lauga et al.

(2004) shows that even for low aspect ratios (AR \ 1) the

flow is highly three-dimensional, a result that is more

important whenever there are abrupt changes in the cross-

section of the geometry.

The pressure drop is an important dynamical quantity

associated with viscous flow through channels having sud-

den changes in cross-sectional area. In entry flows, the total

pressure drop is composed of two parts, one caused by the

pressure drop along the length of the channel due to fully

developed viscous flow plus an excess pressure drop that

arises from the entrance and exit effects. The latter com-

ponent results from streamwise deformations associated

with characteristic features like contractions and expansions

and may represent a significant portion of the total pressure

drop, even in the case of Newtonian fluid flows (Kang et al.

2005, 2006; Oliveira et al. 2007a), particularly when a short

contraction channel is used. This extra pressure drop is

difficult to measure directly by experimental means (Kang

et al. 2006) and is usually presented in terms of a dimen-

sionless Couette correction or a Bagley correction (Bagley

1957; Boger 1982) obtained by extrapolating experimental

measurements. These ‘‘end effects’’ originate mainly from

the streamwise rearrangement of the velocity profile and the

resulting extensional flow (Kang et al. 2006), therefore the

excess pressure drop yields information about the global

state of viscoelastic stresses in the flow (Rothstein and

McKinley 2001). In fact, many researchers have attempted

to use the excess pressure as a means to estimate the

extensional viscosity of viscoelastic fluids and approximate

analyses are often used (Cogswell 1972a; Binding et al.

1988; Boger and Binnington 1990; James et al. 1990;

Rothstein and McKinley 2001; Rodd et al. 2005).
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The paper is organized as follows. In Sect. 2, we

describe the experimental geometry, method of fabrication

and the experimental techniques used for the measure-

ments. In Sect 3, the governing equations and the

numerical method used to solve them are summarized. The

flow geometry and the computational meshes used are also

outlined. The experimental and numerical results are dis-

cussed in Sects. 4–6: the global flow field and the

characteristics of the recirculations are analyzed in Sect. 4;

in Sect. 5 a detailed study of the velocity field is carried

out; and in Sect. 6 the corresponding pressure drops are

evaluated. Finally, in Sect. 7 we summarize the main

conclusions of this work.

2 Experimental

2.1 Channel geometry and fabrication

The channels were fabricated in polydimethylsiloxane

(PDMS) from an SU-8 photoresist mold using standard

soft-lithography techniques (McDonald et al. 2000). The

master molds were prepared using a high-resolution

chrome mask together with a contrast enhancer and a

barrier coat to allow for smooth, nearly vertical walls and

sharp, well-defined corner features. Each set of PDMS

channels was bonded permanently to a microscope cover

slip after being air plasma treated. A detailed description of

the experimental channel fabrication outlined above can be

found in Rodd et al. (2005).

A sketch of the micro-geometry used in this work is

presented in Fig. 1. The set of channels was designed to

have approximately a 16:1:16 contraction–expansion ratio

and different contraction lengths were tested: Lc = 100,

200 and 400 lm. In all cases, the channel depth,

h = 55 lm, the width of the upstream and downstream

channels, wu = wd = 400 lm, and the contraction width

were kept constant. The mask used to produce the channels

resulted in a final contraction width of wc = 26 lm (as

determined by profilometry) instead of the targeted

25 lm required to achieve the 16:1:16 contraction–

expansion ratio; so in effect we have a 15.4:1:15.4 ratio.

The point located at the centerline of the contraction

plane and midway between each end-wall is taken as the

coordinate origin (x = y = z = 0). The length of the

upstream and downstream channels is long enough that

the flow reaches a fully developed velocity profile at all

flow rates studied.

Pressure taps were located 3 mm upstream and down-

stream of the contraction plane (z = 0). A constant

displacement-rate syringe pump was used to impose a

constant flow rate into the micro-device 10 mm upstream

of the contraction plane, over a wide range of flow rates

0.1 B Q B 8 ml/h. A brief description of the experimental

configuration and procedures is given below; further details

can be found in Rodd et al. (2005).

2.2 Measurement techniques

The steady flow kinematics were characterized using

fluorescent streak imaging and micro-particle image

velocimetry (lPIV). For the streak imaging, the fluid was

seeded with 1.1 lm diameter fluorescent particles (Ex/

Em = 520/580 nm) at a weight concentration of 0.02%. A

CCD camera (2,184 9 1,472 pixels) with a 30 ms expo-

sure time was used to acquire the images. This camera was

connected to an inverted microscope with an epi-fluores-

cence attachment and a 10X objective with numerical

aperture NA = 0.3. The flow was illuminated with a

mercury light in combination with a dichroic mirror and

filter set in order to isolate the 546 nm peak of the mercury

lamp light spectrum, and the resultant particle fluorescence

signal (580 nm). For the set-up used the depth of mea-

surement corresponds to 29.7 lm, which amounts to 54%

of the channel depth in the observable streak line images

(Rodd et al. 2005).

Fig. 1 Optical transmission

microscope image and

schematic diagram of the

400:26:400 abrupt planar

contraction–expansion showing

the coordinate system and

variables used throughout the

text. The contraction ratio is

defined as CR = wu/wc and the

aspect ratio as AR = h/wc
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The lPIV technique uses the basic PIV principle of

measuring the local velocities from the average dis-

placement of tracer particles in a correlation region over

a known time (Wereley and Meinhart 2004). Fluorescent

particles (Ex/Em = 520/580 nm) with 0.5 lm diameter

were added to the fluid at a concentration of 0.05% and a

double-pulsed 532 nm Solo Nd:YAG laser system (New

Wave Research) was used to illuminate the flow. A

digital CCD camera (1,375 9 1,040 pixels) connected to

the Nikon microscope with a 20X objective lens

(NA = 0.5) was used to capture the resulting images of

particle displacement. In this configuration, the mea-

surement depth is 11.7 lm (Oliveira et al. 2007a), which

corresponds to 21% of the channel depth. In order to

optimally resolve the velocities in the section to be

analyzed, the time separation (dt) between individual

images was varied depending on the flow rate used, so

that the particle displacements (along the centerline) were

within the range 1.5dp B dz B 8dp, where dp is the par-

ticle diameter and dz is the particle displacement. For

each experiment, a set of 25 image pairs were recorded,

processed and ensemble averaged. Each image was cross-

correlated in interrogation areas of 32 9 32 pixels using

a Nyquist algorithm with a 50% overlap to generate 2D

velocity vector maps. A detailed discussion on the reso-

lution and accuracy of the lPIV technique is presented in

Oliveira et al. (2007a).

The pressure drop was measured experimentally across

a section of the channel containing the contraction–

expansion, using solid-state differential pressure sensors

connected via flexible tubing to two pressure taps located

3 mm upstream and downstream of the contraction plane.

3 Numerical simulations

3.1 Governing equations and numerical method

The governing equations for an isothermal incompressible

fluid flow are the conservation of mass and momentum,

expressed as follows:

r � u ¼ 0 ð1Þ

q
ou

ot
þ u � rð Þu

� �
¼ �rpþr � s ð2Þ

where q is the density of the fluid, t the time, u the velocity

vector, p the pressure and s the extra stress tensor. An

appropriate constitutive equation is needed for s. Since in

this work we are interested in Newtonian fluid flows, then

s ¼ l ruþruT
� �

ð3Þ

where l is the constant shear viscosity of the fluid.

In Newtonian calculations Eq. (3) is usually substituted

in Eq. (2) and the well-known Navier–Stokes equations are

then obtained. However, the numerical code used in this

work has been developed primarily for differential visco-

elastic models (of which Eq. (3) is a particularly simple

limiting explicit case) and as such we keep Eq. (3) sepa-

rated from Eq. (2), as in previous works (e.g. Oliveira et al.

1998; Oliveira and Pinho 1999). For all practical purposes

this separation makes no difference, except for the addi-

tional memory used to allocate storage for the extra stress

tensor. In the work of Oliveira and Pinho (1999), a com-

parison between the formulation used in this work and the

classical approach is presented.

Equations (1)–(3) assume the validity of the continuum

hypothesis, an assumption which has been questioned in a

number of works related to microfluidic applications (Pit

et al. 2000; Barrat and Bocquet 1999). Some preliminary

experiments involving liquids in lyophobic channels have

observed slip occurring at the solid boundary (cf. the

review by Neto et al. 2005). However, as far as current

techniques permit, for Newtonian liquid flows at the

micrometer length scales it has been well established that

under standard conditions the basic laws governing fluid

flow, expressed by the conservation of mass and momen-

tum equations and the no-slip boundary condition at the

walls, remain valid (Whitesides and Stroock 2001; Rodd

et al. 2005; Karniadakis et al. 2005). For water, the con-

tinuum assumption is not expected to break down when the

channel dimensions are above 1 lm (Gad-el-Hak 2002). In

fact, a 10 lm thickness channel contains about 3 9 104

water molecules (considering a diameter of &0.3 nm for a

water molecule), enough to treat the flow under the con-

tinuum theory (Bayraktar and Pidugu 2006). The

agreement between experimental results and the numerical

simulations here presented provides further credibility to

this assumption.

A finite-volume method is used to solve Eqs. (1)–(3)

numerically, using a time marching algorithm (Oliveira

et al. 1998; Alves et al. 2000). In this methodology, the

resulting algebraic equations relate the dependent variables

(p, u, s), which are calculated at the center of the cells

forming the computational mesh, to the values in the

nearby surrounding cells. Orthogonal non-uniform block-

structured meshes are used to map the computational

domain. A time-marching algorithm is used to approach the

steady-state solution and an implicit first-order Euler

scheme is used in the discretization of the time derivative.

We note that because we are only concerned with steady

flow conditions in this work, the precision in the time

derivative is irrelevant since, under steady conditions, the

time derivative term vanishes. Central differences are used

to discretize the diffusive terms, while the CUBISTA high-

resolution scheme (Alves et al. 2003) is used in the

Microfluid Nanofluid (2008) 5:809–826 813
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discretization of the advective terms of the momentum

equations. This scheme is based on the QUICK scheme

of Leonard (1979) and maintains its third-order accuracy

while ensuring boundedness and good iterative-conver-

gence properties (Alves et al. 2003, 2004).

The physical properties of the fluid used in the numer-

ical calculations were selected to match those measured

experimentally, i.e. the viscosity was set to 0.94 mPa s and

the density to 998 kg/m3.

3.2 Problem definition and dimensionless numbers

In order to be able to capture the flow asymmetries

expected at large Re the full domain is used in the simu-

lations, i.e. no symmetry boundary conditions are imposed.

The geometry used for the computations is the same as in

the experiments, as illustrated in Fig. 1. The dimensions

of the inlet and outlet lengths were set to be longer

(Lu = Ld = 30wu) than the experimental device to ensure

that the flow fully develops upstream of the contraction and

completely re-develops downstream of the expansion. This

is also required in order to obtain precise values of the

excess pressure drop due to the presence of the contrac-

tion–expansion. Three different contraction lengths were

simulated to match experiments: Lc = 100, 200 and

400 lm. As mentioned in the Introduction, there are two

important geometrical ratios to be considered in contrac-

tion–expansion flows: the aspect ratio and the contraction

ratio (or expansion ratio). The contraction ratio is defined

as CR = wu/wc and was kept constant throughout this

study to match the experimental conditions described in

Sect. 2.1. The aspect ratio is defined as AR = h/wc. In the

experimental study, a single channel depth of h = 55 lm

was used, while in the numerical simulations, the depth of

the channel was varied from 0.1 to 800 lm, i.e. the aspect

ratio was varied by almost four orders of magnitude, in

order to analyze its influence on the resulting flow kine-

matics and on the pressure drop. The limiting case of 2D

flow (AR ? ?) is also analyzed in detail.

The other important dimensionless variable that

characterizes the flow behavior of an incompressible

Newtonian fluid is the Reynolds number (Re) as shown in

Fig. 2. Control volume analysis of fully developed flow

leads to the concept of a hydraulic diameter described in

terms of the cross-sectional area and wetted perimeter of the

channel cross-section: Dh = 4 Area/Perimeter (Gad-el-Hak

2002). This quantity provides a simple way of character-

izing a channel of non-circular cross-section using a single

characteristic length scale. In microfluidics, where we are

commonly dealing with channels of planar cross-section, it

is typical to define Re as a function of the hydraulic

diameter of the contraction channel, Dh;c ¼ 2hwc= hþ wcð Þ;

Fig. 2 a Effect of mesh

refinement on the normalized

axial velocity (Vz/hVziu) contour

lines at the center plane (y = 0)

upstream and downstream of the

contraction obtained

numerically with the coarse

mesh (dashed lines) and the

refined mesh (solid lines) for the

3D geometry (wc = 26 lm,

h = 55 lm, Lc = 100 lm).

b Zoomed view of the refined

mesh near the contraction–

expansion region
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and the average velocity in the contraction region

( Vzh ic ¼ Q=h wc; where Q is the volumetric flow rate)

(Rodd et al. 2005; Tsai et al. 2006) resulting in:

Re ¼ q Vzh icDh;c

l
¼ q Vzh icwc

l
2AR

ARþ 1
ð4Þ

For 2D flows, in which h/wc [[ 1, Dh,c ? 2wc and the

Reynolds number becomes Re 2Dð Þ ¼ 2q Vzh icwc

l : Alterna-

tively, the Reynolds number can be defined directly in

terms of the contraction width, Rewc
¼ q Vzh icwc

l ; i.e. Rewc
¼

Re ARþ1
2AR

; which in some cases can be a more convenient

representation of the flow behavior, as will be discussed in

Sect. 6.

Computational meshes with different levels of refine-

ment were used to map each contraction–expansion

geometry. The meshes are orthogonal but non-uniform

with the size of each cell relating to its neighbors by a

geometric progression within each direction. The smallest

cells are concentrated near the re-entrant corners, where

stress and velocity gradients are expected to be higher. For

the 3D geometries, the size of the smallest cell normalized

by the width of the contraction is Dxmin=wc ¼ Dymin=wc ¼
Dzmin=wc ¼ 0:04 for the coarser meshes and half this value

for the refined meshes (cf. Fig. 2b for an example of a

refined mesh), which were obtained by doubling the

number of cells in each direction. For the range of flow

conditions studied, the results are mesh independent within

2% (cf. the axial velocity contour plots shown in Fig. 2a).

Therefore, unless stated otherwise, the results presented in

the remainder of the paper were obtained with the coarser

mesh. In the limiting 2D case, where we study a much

broader range of flow rates, the effect of mesh refinement

can be more noticeable at higher flow rates. Also, to be able

to capture accurately the critical conditions for onset of

flow asymmetries and bifurcations, meshes with high spa-

tial refinement are necessary. Therefore, the 2D results

presented in this work were computed with meshes that are

more refined in the x–z plane. In the 2D case, Dxmin=wc ¼
Dzmin=wc ¼ 0:02 for the coarser meshes and Dxmin=wc ¼
Dzmin=wc ¼ 0:01 for the refined meshes.

4 Flow patterns and recirculation characteristics

4.1 Experimental microfluidic device (3D

computations)

At low Reynolds numbers the diverging flow downstream

of the expansion plane is symmetric about the midplane

(x = 0) of the device as shown in Fig. 3. In this figure we

overlay the experimental streak lines measured at the

center plane (y = 0) downstream of the expansion plane

with the corresponding numerical calculations. There is a

good agreement between the experimental streak lines and

the numerical predictions, which can be further confirmed

in Fig. 4. An increase in Re leads to the development and

enhancement of recirculating ‘‘lip vortices’’ Re . 20ð Þ; as

well as reattached symmetric corner recirculations at

higher Reynolds number, downstream of the expansion

plane (Fig. 3). This is in agreement with the observations

of Townsend and Walters (1994), for a 14:1 expansion

geometry, and Rodd et al. (2005), for a similar geometry to

the one used here. In Fig. 4, we illustrate the effect of

inertia on the size of the primary recirculations formed

downstream of the expansion as the Reynolds number is

increased. The dimensionless size of the lip recirculation

that is formed at low Re is defined by its length in the

x-direction normalized with wu (Llip/wu, see Fig. 3) and is

limited to a maximum of (wu -wc)/(2wu) = 0.47. The

strength and size of the recirculations increase as the

effects of inertia increase and once they reach the salient

corner, the recirculations continue to grow in the down-

stream direction. Their size (LV) is now parameterized by

the recirculation length in the z-direction as illustrated in

Fig. 3 (and by convention they are now termed corner re-

circulations or ‘‘corner vortices’’). It should also be noted

that the streak lines and recirculation sizes measured

experimentally are symmetric about the centerline even for

the highest Re tested.

At first glance, the experimental streak lines and the

numerical predictions in Fig. 3 may suggest that the re-

circulations are closed structures. In fact, in a 3D geometry,

the presence of a top and bottom bounding wall leads to

complex 3D spiraling recirculation structures (Chiang et al.

2000; Tsai et al. 2006). The fluid enters the recirculating

structure close to the wall and follows a spiral movement

toward the center plane, where it exits the recirculation.

Nevertheless, despite the different circulation patterns and

the fact that the flow is highly three-dimensional, the sizes

of the projected recirculations near the wall and at the

center plane are very similar. Thus, even though the

experimental streakline images arise from fluorescent par-

ticles over approximately 54% of the channel depth (as

explained in Sect. 2.2), they are visually very clear and

sharp.

The complex path of two fluid elements in a 3D

geometry is illustrated in Fig. 5, where the open nature of

the recirculation is clearly evident. To obtain the streak

lines displayed, the two fluid elements were selected in

order to pass a point downstream of the contraction with

the same axial and lateral coordinates, z = 500 lm and

x = 180 lm, but with different out-of-plane coordinates:

y = 1 lm (1 lm from the center plane; fluid element 1)

and y = 21.5 lm (6 lm from the wall; fluid element 2). In

this way, we capture one of the particles that is entrained

within the recirculation and another one that just manages
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to avoid it. An analysis of the Lagrangian trajectories of the

two particles shows a large difference in residence times.

Even though fluid element 2 spends most of the time close

to the upper bounding wall, where the velocities are lower,

its residence time is smaller since it is not trapped in the

recirculation (see Supplementary Information, Sect. S1).

4.2 Effect of the aspect ratio

In such a markedly three-dimensional flow, the channel

depth is bound to have an impact on the flow patterns.

Figure 6 illustrates the effect of varying the aspect ratio AR

on the predicted streamlines. The numerical calculations

were obtained for Lc = 200 lm, keeping the Reynolds

number constant (Re = 43.7, as defined in Eq. (4)) while

varying the channel depth h. The primary recirculations are

seen to expand as the channel depth is increased, while

keeping the Reynolds number constant. It is interesting to

note that, for this chosen value of Re, the flow becomes

asymmetric at an aspect ratio (AR = h/wc) between 100/26

and 400/26. Thus, by reducing the strength of secondary

flows and inhibiting the onset of flow asymmetries, the

walls have a stabilizing effect on the flow patterns. It is

important to notice that we only observe asymmetries at

rather high aspect ratios for the range of Reynolds numbers

analyzed. We re-emphasize that this transition represents a

bifurcation to an asymmetric flow structure that is steady in

time. In fact, all the results presented in this work (both

computational and experimental) are for steady-state flow

conditions. For the 3D geometry used in the experiments

Fig. 3 Effect of inertia on the

experimental streaklines

(photograph) and predicted

streamlines (solid lines)

obtained at the center plane

(y = 0) downstream of the

contraction for water flowing

through a 400:26:400

contraction–expansion with

h = 55 lm and Lc = 200 lm
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AR ¼ h=wc ¼ 2:12ð Þ no flow asymmetries were observed

even for a Reynolds number as high as Re = 110.

With the objective of performing a systematic study of

the effect of the aspect ratio on the flow structure, we have

carried out an extensive set of simulations and classified the

patterns of the flow downstream of the contraction at

increasing Reynolds number. These calculations were per-

formed for Lc = 400 lm and the resulting flow structures

were classified as ‘‘no recirculation’’, ‘‘lip recirculation’’,

‘‘corner recirculation’’, ‘‘combination of lip and corner

recirculations’’, ‘‘full corner recirculation’’ and ‘‘asym-

metric flow structure’’. The flow pattern map in Fig. 7

illustrates these flow structures and their location in the

H� Re parameter space. We have chosen the dimension-

less variable H � h= hþ wcð Þ ¼ AR= ARþ 1ð Þ as the

appropriate geometric ratio to plot, instead of the raw aspect

ratio AR defined previously, so the values of the ordinate

axes are bounded between zero (AR ? 0; corresponding to

the Hele–Shaw flow limit) and unity (AR ? ?; corre-

sponding to the 2D flow limit).

In the lower left corner of Fig. 7, which represents low

H and low Re, there is no visible recirculation formed

downstream of the expansion and the flow patterns

resemble that of irrotational flow. On the other hand, in the

opposite corner of high H and high Re, asymmetric flow

with large recirculating structures, is observed. In-between

these two regions, we find a combination of lip and/or

corner recirculations. Independent of the spatial structure

of the flow, recirculation enhancement with increasing fluid

inertia is seen for all aspect ratios considered, except in the

limit of H ! 0; for which we have a Hele–Shaw flow, and

therefore the flow in the z–x plane is irrotational without

any recirculation. The formation of a small and weak

recirculation near the corner (the ‘‘Moffatt eddy’’), appears

to occur at a fixed value of H � 0:5 (corresponding

to AR & 1) independently of the Reynolds number.

Increasing the Reynolds number leads to the onset of a lip

recirculation, near the re-entrant corner, which increases in

size and intensity until it reaches the downstream wall,

creating a large corner recirculation. Further increases in

Re leads to a bifurcation to an asymmetric flow at high H
as already discussed.

4.3 Two-dimensional geometry (2D)

As noted in the Introduction, the fluid motion approaches a

truly 2D flow when AR [[ 1 (Chiang et al. 2000; Tsai

et al. 2006), and is prone to develop asymmetries in the

downstream channel as the Reynolds number increases

(e.g. Oliveira 2003). In Fig. 8, we examine the onset of

these asymmetries in more detail by showing the stream-

lines calculated numerically for 2D flow as a function of

Re. The Reynolds number in the 2D geometry is given by

Re(2D) = qhVzic2wc/l, as already explained in Sect. 3.2. It

should be noted that many authors studying 2D flows in

expansion geometries prefer to use Re = qhVzicwc/l,

which is half of the value reported here. For low Reynolds

number (e.g. Re(2D) = 0.01), the viscous flow through the

contraction–expansion geometry is reversible (fore/aft

symmetric) as shown in Fig. 8a and it is impossible to

deduce the flow direction. For Re(2D) = 1.3 (Fig. 8b), the

small Moffatt eddy upstream of the contraction reduces in

size slightly, while the vortex downstream of the expansion

Fig. 4 Effect of inertia on the dimensionless recirculation length at

the center plane (y = 0) for the experimental geometry (wc = 26 lm,

h = 55 lm, Lc = 200 lm). The open symbols represent the numer-

ical data; the dark and light filled symbols represent the experimental

measurements of the upper and lower recirculation sizes, respectively

Fig. 5 Trajectories of two material points through the sudden

contraction–expansion (wc = 26 lm; Lc = 200 lm; h = 55 lm),

one that enters the recirculation (dark line) and goes through point

z = 500 lm, x = 180 lm and y = 1 lm and another that does not

enter the recirculation (light line) and goes through point

z = 500 lm, x = 180 lm and y = 21.5 lm

Microfluid Nanofluid (2008) 5:809–826 817

123



plane increases in size and intensity. It is clear that in the

limiting case of a 2D geometry, the vortices are now closed

recirculating structures. The flow remains symmetrical

about the center plane (x = 0) as the Reynolds number is

further increased and, in addition, the corner vortices

downstream of the expansion grow while the upstream

corner vortices get smaller, as indicated by the streamline

plots in Fig. 8b–c. On further increasing Re(2D), we find

that the 2D flow exhibits a supercritical bifurcation

becoming asymmetric with respect to the x = 0 line

(Fig. 8d). We note once again that the pattern presented in

Fig. 8d was obtained under steady-state conditions and

could have evolved to this or its image configuration with

respect to the x = 0 line. At Re(2D) = 71.3 (Fig. 8e), a

third large vortex has already emerged downstream of the

expansion.

The evolution of the vortex structures can be summa-

rized in the bifurcation diagram of Fig. 9, in which we

show the effect of the Reynolds number on the size of the

vortices formed downstream of the 2D planar expansion.

The lengths corresponding to each branch of this bifurca-

tion diagram (L1 to L4) are marked in Fig. 8e. The critical

Reynolds number for the onset of asymmetric flow is

approximately Re 2Dð Þc � 28:5: At Re(2D) = 31.1 the flow is

Fig. 6 Effect of channel depth

on the predicted streamlines at

the center plane (y = 0) for a

400:26:400 contraction–

expansion geometry with

Lc = 200 lm, keeping the

Reynolds number constant

(Re = 43.7)

Fig. 7 Flow pattern map: 1 no recirculation; 2 lip recirculation; 3
corner recirculation; 4 lip and corner recirculations; 5 full corner

recirculation; 6 asymmetric flow

818 Microfluid Nanofluid (2008) 5:809–826

123



clearly asymmetric (Fig. 8d), but for Re(2D) = 28.5,

although not yet clearly visible in the bifurcation plot, a

slight asymmetry is already present. This value is in good

agreement with the computed results of Mishra and

Jayaraman (2002) in a 1:16 2D expansion Re 2Dð Þc ¼
�

25.2Þ,
even though the two works are not exactly comparable

(here the contraction/expansion ratio is CR = 15.4 and the

flow in the smaller channel may not be fully developed

when the expansion is approached). Near the critical point,

the larger recirculation increases in size while the smaller

one decreases as the Reynolds number increases. For

Re(2D) & 42, a new vortex forms downstream of the two

primary vortices (Fig. 8e) on the side of the smaller corner

vortex. In all cases discussed, for H ¼ 1 (2D flow), we are

able to identify smaller corner (Moffatt) vortices down-

stream of the expansion plane in addition to the primary

vortices, as shown by the inset in Fig. 8e.

5 Velocity field in the contraction–expansion

The velocity field was determined experimentally using

lPIV and compared to the numerical calculations. To

assess the evolution of the velocity along the lateral

direction as the contraction is approached, we have plotted

both experimental and numerical velocity profiles for the

center plane (y = 0) and for various axial positions

upstream of the contraction �1:49� z=ðwu=2Þ� 0:235ð Þ:
In Fig. 10a, we depict the transverse profiles of the axial

velocity Vz and in Fig. 10b of the lateral velocity Vx, both

normalized with the average axial velocity upstream of the

contraction. For an axial position well upstream the con-

traction plane z=ðwu=2Þ ¼ �1:49ð Þ; the profiles approach

those of fully developed flow in a channel of rectangular

cross-section. As we move toward the contraction plane,

the streamlines converge toward the centerline. This causes

Fig. 8 Predicted streamlines

for a 2D contraction–expansion

H ¼ 1ð Þ; with wc = 26 lm and

Lc = 200 lm, over a range of

Reynolds numbers:

0.01 B Re(2D) B 71.3
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the axial velocity near the walls ð0:4 . jx=ðwu=2Þj . 1Þ to

decrease, while the lateral velocity increases substantially

relative to the fully developed flow. The maximum velocity

attained at the centerline (y = 0, x = 0) increases as we

approach z = 0 and the effects of the contraction become

more noticeable.

The experimental and predicted axial velocity profiles

along the centerline upstream of the contraction are shown

in Fig. 11 for Re = 7.3. The axial velocity is scaled with

the average upstream velocity and is compared to the

equivalent numerical calculations. The profile evolves from

fully developed in the upstream part of the channel far

away from the contraction (where the centerline velocity is

constant) to a region ð�5 . z=wc . 0Þ where the fluid

accelerates as the contraction plane is approached. The

numerical simulation is able to capture with good accuracy

both the point at which the velocity starts to increase in the

experiment, as well as the rate of increase (see also Sup-

plementary Information, Sect. S2).

In Fig. 12a, we extend Fig. 11 (for AR = 2.12) to show

the computed axial velocity profiles over a larger range of

axial positions along the centerline (including the upstream

channel, the contraction and the downstream expansion)

and for a broader range of Re (0.73 B Re B 43.7). Fig-

ure 12b shows the corresponding strain rate profile (qVz/qz)

along the centerline. The expected symmetrical behavior of

the velocity profile, characteristic of creeping flows, can be

readily observed for the lower Reynolds numbers. For the

lowest Reynolds number (Re = 0.73), the velocity and

velocity gradient profiles are symmetric. Consequently,

just by looking at streak patterns we would not be able to

identify which direction the fluid is flowing, since at this

low Reynolds number the flow is reversible and the streak

lines upstream and downstream of the contraction are

coincident. In this case, due to the small depth of the

geometry (AR = 2.12), the flow in the z–x plane approa-

ches a potential flow and is very similar to that observed in

a Hele–Shaw apparatus. Also of interest is the absence of

the Moffatt corner vortex (cf. region 1 in Fig. 7) charac-

teristic of 2D viscous corner flows (Moffatt 1964). This

vortex is present even under inertialess flow conditions in

simulations of 2D flows and in general for high AR

(AR [[ 1) (cf. region 3 in Fig. 7 and see Supplementary

Information, Sect. S3).

For higher flow rates (Re C 1), the profiles shown in

Fig. 12 are no longer symmetric about the line z = Lc/2,

and it takes longer for the velocity to decay toward its fully

developed state. In addition, for most of these flow rates,

the flow does not have a long enough residence time to

fully develop in the contraction throat (see inset in

Fig. 12a). Therefore, the results downstream of the

Fig. 9 Bifurcation diagram for a 2D geometry H ¼ 1ð Þ with

wc = 26 lm and Lc = 200 lm: effect of Reynolds number, Re(2D)

Fig. 10 Comparison of the dimensionless velocity profiles at the

center plane (y = 0) for the contraction-expansion geometry

(wc = 26 lm, h = 55 lm) determined experimentally (open sym-
bols) and numerically (filled symbols), as a function of the distance

from the centerline for Re = 7.3 and a range of z-positions upstream

of the contraction plane denoted by the following dimensional and

dimensionless positions: z (z/(wu/2)): (square) -47 lm (-0.235),

(circle) -98 lm (-0.49), (triangle) -195 lm (-0.975), (tilted
triangle) -298 lm (-1.49). a Axial velocity; b lateral velocity
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contraction cannot be directly compared to those obtained

in a simple expansion geometry, where fully developed

flow in the upstream channel is usually imposed as an inlet

condition (see, e.g. Drikakis 1997). In our case, the maxi-

mum velocity at the contraction exit is, in most cases,

slightly below the actual fully developed value. As the flow

rate increases, steady symmetric recirculations grow

downstream of the expansion plane. This results in slower

deceleration of material elements and a marked reduction

in the magnitude of the extension rate |qVz/qz| along the

centerline downstream of the expansion plane. By contrast

the upstream profile remains almost unchanged with

changes in flow rate and a maximum value given by (qVz/

qz)max & 0.8hVzic/wc. This is an important result from a

rheometric point of view; it allows the control of the

(dimensional) strain rate by controlling the flow rate and

then measuring the resulting pressure drop.

6 Pressure drop

The global pressure drop DP12 between the two pressure

taps (located 3 mm upstream and downstream of the

contraction plane) was measured experimentally using

differential pressure sensors as discussed in Sect. 2.2. In

Fig. 13 we compare experimental data for the global

pressure drop with the corresponding numerical predic-

tions. We examine the effect of inertia, by varying the flow

rate in the range 0 \ Q B 12 ml/h (substituting for the

relevant geometric quantities and the material properties of

water we find Re = 7.28Q, with Q in ml/h). The geometry,

with Lc = 100 lm and h = 55 lm, was chosen to match

the experimental conditions of Rodd et al. (2005). For low

flow rates (Q B 2 ml/h), the pressure drop is seen to

increase linearly with Q as expected. As the flow rate is

further increased the non-linear convective terms in the

momentum equation become important and the total

pressure drop starts to deviate from the linear viscous

scaling, as can be clearly observed in the log–log inset on

Fig. 13. Close agreement is observed between the numer-

ical and experimental results over the whole range of

experimental conditions.

Experimentally, it is a challenging task to obtain further

details regarding the local evolution of the pressure field

within the channel. Numerically, however, we can probe

the pressure field in detail. In Fig. 14a, we show the evo-

lution of the dimensionless pressure along the centerline

(y = 0 and x = 0) to illustrate the effect of fluid inertia.

We also show for reference the scaled pressure expected

for a hypothetical fully developed flow in all channels. This

serves as a useful reference for comparisons. The effect of

the contraction is clear, and is manifested in a drop in

pressure just upstream of the entrance to the throat. This

pressure drop is associated with the flow rearrangement

Fig. 12 Predicted axial velocity profiles (a) and corresponding strain

rate profiles (b) along the centerline (y = 0, x = 0) for wc = 26 lm,

h = 55 lm and Lc = 100 lm and a range of Re: Re = 0.73 (open
square), Re = 7.3 (filled square), Re = 21.8 (open circle) and

Re = 43.7 (filled circle)

Fig. 11 Axial velocity profile along the centerline (y = 0, x = 0) for

the contraction–expansion geometry (wc = 26 lm, h = 55 lm) as a

function of the axial position (-14 \ z/wc \ 0) for Re = 7.3:

experimental (open symbols) and numerical (filled symbols)
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near the contraction plane and is the main source of dif-

ference between the computed profile and the hypothetical

locally fully developed flow. There is also a small, but

noticeable, exit effect near the expansion plane. The vis-

cous flow in the narrow channel develops very rapidly at

these flow rates. Varying the total length of the channel

changes the total pressure drop across the device but does

not influence the entrance correction appreciably (see

Supplementary Information, Sect. S4). Figure 14b shows

the longitudinal pressure gradient qp/qz along the center-

line for the contraction–expansion for a range of Reynolds

numbers (0.73 B Re B 43.7). There is an initial region of

abrupt increase in the pressure gradient, from a situation of

fully developed flow away from the contraction to a

maximum at the contraction plane. As the Reynolds

number increases, the increase in the normalized pressure

gradient becomes more pronounced. Because of the

reversibility of creeping flow, the exit region is a mirror

image of the entrance region at low Re and the maximum

pressure gradient attained corresponds to that of a fully

developed flow in the narrow channel. For higher flow

rates, the pressure gradient beyond the contraction plane

decays until it reaches a constant value consistent with

Poiseuille flow in a channel of width wc and depth h. Just

upstream of the expansion plane, the pressure gradient

starts to decrease once more, until it eventually becomes

constant far downstream from the expansion at the value

expected for viscous flow in a channel that is approxi-

mately 16 times wider than the throat. For the two highest

values of Re, the pressure gradient actually changes sign

before reaching this constant value as a result of the re-

circulating structures downstream of the expansion plane.

To summarize these observations, the contraction entrance

region is responsible for a large fraction of the extra

pressure drop, and this increases substantially with flow

inertia.

We now proceed to focus on the extra (or excess)

pressure drop Dpexc associated with the contraction–

expansion flow. This cannot be readily measured in

experiments but can be evaluated from measurements of

the total pressure drop and application of an appropriate

analytic decomposition (Boger 1987; Kang et al. 2006).

Numerical computations of the full pressure field can be

used to explore the validity of the protocols employed in

processing the experimental data.

The excess pressure drop is calculated by subtracting

from the global pressure drop the net pressure drop asso-

ciated with the fully developed Poiseuille flow in the

upstream and downstream parts of the channel, plus that in

the narrow contraction:

Fig. 13 Comparison of the total pressure drop determined experi-

mentally (filled symbols) and numerically (open symbols) as a

function of the flow rate. The inset shows the numerical results on a

log–log scale and compares the computed values with the linear

behavior anticipated at low flow rates (solid line)

Fig. 14 Normalized pressure profiles (a) and pressure gradient (b)

along the centerline (y = 0, x = 0) for the 400:26:400 contraction–

expansion geometry with h = 55 lm and Lc = 100 lm: Re = 0.73

(open circle), Re = 7.3 (open triangle), Re = 21.8 (tilted triangle)

and Re = 43.7 (open square); the solid line in (a) corresponds to a

hypothetical pressure profile if there were no entrance or exit effects

and the flow was locally fully developed at all times
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Dpexc ¼ Dp12 �
dp

dz

� �
u

Lu �
dp

dz

� �
d

Ld �
dp

dz

� �
c

Lc ð5Þ

where the subscript ‘‘u’’ refers to the channel upstream of

the contraction plane, ‘‘d’’ to the channel downstream of

the expansion plane, and ‘‘c’’ to the narrow channel in the

contraction region. An alternative dimensionless quantity

commonly reported is the Couette correction defined as

C = DPexc/2sw (Boger 1982), i.e. as the excess pressure

drop arising from the sudden contraction and expansion

scaled with 2sw, where sw is the average wall shear stress

of the fully developed flow in the contraction channel:

2sw ¼ � dp=dzð ÞcDh;c=2 ð6Þ

The effect of fluid inertia on the excess pressure drop

and corresponding Couette correction are presented in

Fig. 15. The excess pressure drop arises mainly from the

entrance effects described in our analysis of Fig. 14a.

These entry effects become more pronounced at higher

flow rates, and thus the excess pressure drop and Couette

correction increase substantially with Re. For the range of

contraction lengths tested, Lc does not seem to have an

effect on the excess pressure drop, provided that the flow

has sufficient residence time for the pressure gradient to

fully develop and that there are portions of the narrow

contraction where the entrance and exit effects are not felt.

This is achieved for the range of Re used, except for the

case of the contraction with length Lc = 100 lm and for

the higher Reynolds numbers.

The Bagley analysis and associated Bagley plot is a

common tool in the polymer processing field in which

axisymmetric capillaries are generally used to measure

entrance effects in complex fluids (Kim and Dealy 2001).

The Bagley plot is a graph of the total pressure drop versus

the length to diameter ratio of the die, with apparent wall

shear rate as the control parameter (Kim and Dealy 2001).

The measured data falls on straight lines each corre-

sponding to a specific value of the apparent shear rate and

extrapolation to the limit of zero capillary length gives the

excess pressure drop. Typically for axisymmetric geome-

tries, the total pressure drop is calculated between two

points, one at a fixed upstream location (z = -z0) and the

other on the free jet exiting downstream (atmospheric

pressure), for several different Lc keeping the flow rate

constant. The extrapolation of the fitted straight line to

Lc = 0 allows the calculation of the Bagley excess pressure

drop and corresponding dimensionless Bagley correction

(Mitsoulis et al. 1998). This method yields good results in

axisymmetric contractions with high contraction ratios,

since the pressure drop upstream of the contraction due to

fully developed flow as well as at the exit of the capillary

are negligible compared to the excess pressure drop. In

the case of microfluidic devices, where the channels are

typically planar with a constant out-of-plane dimension

(i.e. depth) smaller than the upstream channel width, the

effective contraction ratio—based on hydraulic diameters

(Dh,u/Dh,c)—is much smaller when compared at an

equivalent nominal contraction ratio wu/wc as in the axi-

symmetric case. In such cases, depending on the positions

z0 chosen for the pressure transducers we would obtain

different values of DPexc. It is thus helpful to rethink the

Bagley analysis for microfluidic devices. To determine the

equivalent to the Bagley correction for such planar geom-

etries, the total pressure drop was calculated between

pressure taps located at positions that are proportional to

the length of the contraction. For example, the total pres-

sure drop for the Bagley plot, DPBagley, for the contraction–

expansion device should be calculated between:

• z = -a and z = Lc + b, for Lc = 100 lm,

• z = -2a and z = Lc + 2b, for Lc = 200 lm,

• z = -4a and z = Lc + 4b, for Lc = 400 lm.

for the contraction–expansions simulated in the present

work, i.e. Lc = 100, 200 and 400 lm. Extrapolation to the

limiting case Lc = 0 of the straight line fitted to the total

pressure drop will yield the relevant Bagley correction.

Using this construction, the calculated DPexc will be the

same, whatever a and b values we decide to use, provided

that they are proportional to the contraction length and that

they are sufficiently separated from the contraction so that

there are no exit or entrance effects. In the calculations, we

have used arbitrarily the values a = b = 1 mm.

Figure 16 shows the Bagley plot corresponding to our

contraction–expansion geometry for various Reynolds

numbers in the range from Re = 0 (creeping flow) to

Re = 87.4. We used three different lengths of the con-

traction: 100, 200 and 400 lm, and since we are dealing

with a planar geometry, we report the ratio of Lc to the

Fig. 15 Effect of inertia on the excess pressure drop for a contrac-

tion–expansion geometry with wc = 26 lm, h = 55 lm and

Lc = 400 lm
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width of the contraction channel, wc. As expected, for the

lower flow rates, the total pressure drop increases linearly

as a function of the length of the contraction. For the two

highest Re, there is a slight deviation from linearity, which

is related to the fact that for the shorter contraction the

residence time of material elements in the narrow channel

is not sufficient for the flow to develop fully. This will have

an effect on the accuracy of the Bagley prediction of excess

pressure drop. The Bagley analysis results in the same

values as the corresponding Couette correction, except for

the highest Reynolds numbers (Re [ 50), for which the

Bagley analysis yields slightly lower values. If we calculate

the Bagley correction for the highest Reynolds numbers

(Re = 58.3 and Re = 87.4) using only on the data corre-

sponding to Lc = 200 and 400 lm (where the flow is fully

developed in the middle of the smaller channel), then we

achieve perfect agreement between both methods. This is

an important finding, since the Bagley method of deter-

mining the excess pressure drop is likely to be more

amenable for use in an experimental context.

As in the previous section, we have also studied the

effect of the aspect ratio AR on the pressure drop for a range

of Reynolds number, and this is shown in Fig. 17. The

Couette correction, calculated using Eqs. (5) and (6),

increases with the Reynolds number for large values of h,

but approaches a constant value independent of Re as the

channel depth decreases; however, this value depends on h

itself. Better insight is obtained if instead we plot a modified

Couette correction, C*, defined as C� ¼ DPexc

2s�w
¼

DPexc

� dp=dzð Þ
contraction

� wc
; as a function of the Reynolds number

based on channel width Rewc
ð Þ: This parameter represents

the extra pressure drop due to the contraction–expansion in

terms of the number of equivalent multiples of the (small)

microchannel widths that would produce the same pressure

loss. The meaning of this parameter can be more easily

understood by analogy with the pressure drops reported in

turbulent flows that arise from minor losses in pipe systems.

These are commonly expressed as a loss factor K which can

also be related to the number of equivalent pipe diameters.

The asymptotic behavior of the excess pressure drop is now

much clearer: the modified Couette correction is bounded

between two limiting cases corresponding to Hele–Shaw

flow and 2D flow. For a 15.4:1:15.4 contraction expansion

at low Rewc
; the results are bounded between constant

values of 0.84 (2D flow, AR ? ?) and 1.52 (Hele–Shaw

flow, AR ? 0). For high aspect ratios, the modified Couette

correction increases substantially with increasing inertia

beyond Rewc
� 5; as illustrated in Fig. 17b.

Fig. 16 Bagley plot for a range of Reynolds numbers (Re B 87.4) in

the 400:26:400 contraction–expansion geometry with h = 55 lm

Fig. 17 Effect of the aspect ratio on the standard (a) and modified

Couette correction (b) for the 400:26:400 contraction–expansion

geometry: h = 0.1 lm (AR = 3.85 9 10-3); h = 1 lm

(AR = 3.85 9 10-2); h = 5 lm (AR = 1.92 9 10-1); h = 10 lm

(AR = 3.85 9 10-1); h = 20 lm (AR = 7.69 9 10-1); h = 40 lm

(AR = 1.54); h = 200 lm (AR = 7.69); 2D (AR ? ?)
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7 Conclusions

A series of numerical simulations have been performed for

Newtonian fluid flow through an abrupt contraction–

expansion microfluidic device over a range of aspect ratios

and Reynolds numbers. The numerical results are in good

agreement with experimental measurements of the kine-

matics and pressure drop for the same conditions (fluid and

geometry). The numerical calculations allow for a more

detailed analysis of the flow and a broader range of con-

ditions than the experiments, thus complementing the

experimental work and guiding future device design.

It was shown that although the flow may appear to be

quasi-2D, in fact, for typical values of the aspect ratio that

can be obtained experimentally, it is highly three-dimen-

sional with open spiraling recirculating structures in the

stagnant corner regions. For the range of Re values which

can be achieved experimentally in our set-up (Re . 90;

AR = 2.1), computations and observation show that the

flow always remains symmetric about the center plane. As

inertial effects become important, the formation and growth

of lip recirculations is observed downstream of the expan-

sion. At Re & 20, the lip recirculations reach the outer

walls of the expansion geometry and grow downstream.

Beyond this transition, the recirculation size increases

monotonically with Re. Two-dimensional simulations were

also carried out in a corresponding idealized channel (cor-

responding to AR [[ 1) in which the effects of the upper

and lower endwalls are negligible. A supercritical bifurca-

tion is found in 2D flow for a critical Reynolds number of

Re(2D) & 28. The flow asymmetries become more pro-

nounced with increasing Reynolds number, and large stable

recirculations are formed downstream of the expansion.

This work illustrates that even relatively simple planar

contraction–expansion geometries can lead to highly com-

plex 3D flows. Simpler 2D approximations can lead to large

quantitative errors in the predictions of measurable quan-

tities such as recirculation size and excess pressure drop

which may not even be qualitatively acceptable.

The dimensionless excess pressure drop associated with

the converging-diverging flow was evaluated using both

the Couette and Bagley approaches. We suggest a modified

means of calculating the Bagley correction which appears

to be more appropriate for planar microchannels with a

contraction followed by an expansion. In this way, the

Couette and Bagley correction methods yield consistent

results provided that fully developed flow is attained at

some point in the contraction region. The excess pressure

drop is caused primarily by the flow rearrangement in the

entrance region, which becomes more pronounced as the

Reynolds number is increased. The effect of varying the

device aspect ratio (AR) on the excess pressure drop has

also been studied in detail. Analysis of both the computed

velocity and pressure fields show that the results are

bounded between two well-defined limiting cases: that of

2D viscous flow (AR ? ?) and viscous potential flow in

the limiting case of Hele–Shaw flow (AR ? 0).

The ability of the 3D numerical calculations to accu-

rately capture both the kinematics and dynamics observed

experimentally provides a mechanism for rapidly exploring

the consequences of changes to the geometric parameters

governing the flow in a microfluidic device. This compu-

tational rheometric capability will prove useful in

optimizing the design of future microfluidic rheometers.
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