313 research outputs found

    Automatic Change of SDR Parameters\u27 Values During Runtime in GNURADIO for Satellite Communication Subsystem

    Get PDF
    Shifting from traditional hardware radios to the Software-Defined Radio (SDR) is becoming reality, and SDRs are going rapidly to dominate the satellite communication subsystems. For testing designs, researchers use many tools such as the popular GNURADIO software which programs and controls SDR devices by providing signal processing blocks implementing the desired signals as well as hardware interface blocks. It is user-friendly and simple to beginners. Moreover, it has powerful and advanced capabilities for more complex missions. In some cases, we need to modify communication parameters such as frequency, data rate or modulation scheme without relaunching the program. Many times, the values of these changes are not available until the runtime, thus parameter’s new values need to be fed to the communication program while it is running. As a case study, this paper presents a method of changing SDR transmit and receive frequency in GNURADIO to compensate for the doppler shift effect. The main code that is generated by GNURADIO in Python is modified and linked with another Python program to calculate doppler shift frequencies. The real-time frequency value is fed to the SDR device blocks in GNURADIO while it is running using networking protocols. The frequency calculation code is based on PyEphem library. This program uses the two-line elements set (TLE) to know the satellite position then it uses the ground station coordinates as an input in order to find the relative velocity which is the main factor to calculate the doppler shift frequencies. The system is tested using a laptop, Raspberry Pi 4, LimeSDR and RTL-SDR devices. Methods of handling such issues directly affect the efficiency of the communication which lead to more robust links to improve satellites data delivery capacity

    Automatic Change of SDR Parameters\u27 Values During Runtime in GNURADIO for Satellite Communication Subsystem

    Get PDF
    Shifting from traditional hardware radios to the Software-Defined Radio (SDR) is becoming reality, and SDRs are going rapidly to dominate the satellite communication subsystems. For testing designs, researchers use many tools such as the popular GNURADIO software which programs and controls SDR devices by providing signal processing blocks implementing the desired signals as well as hardware interface blocks. It is user-friendly and simple to beginners. Moreover, it has powerful and advanced capabilities for more complex missions. In some cases, we need to modify communication parameters such as frequency, data rate or modulation scheme without relaunching the program. Many times, the values of these changes are not available until the runtime, thus parameter’s new values need to be fed to the communication program while it is running. As a case study, this paper presents a method of changing SDR transmit and receive frequency in GNURADIO to compensate for the doppler shift effect. The main code that is generated by GNURADIO in Python is modified and linked with another Python program to calculate doppler shift frequencies. The real-time frequency value is fed to the SDR device blocks in GNURADIO while it is running using networking protocols. The frequency calculation code is based on PyEphem library. This program uses the two-line elements set (TLE) to know the satellite position then it uses the ground station coordinates as an input in order to find the relative velocity which is the main factor to calculate the doppler shift frequencies. The system is tested using a laptop, Raspberry Pi 4, LimeSDR and RTL-SDR devices. Methods of handling such issues directly affect the efficiency of the communication which lead to more robust links to improve satellites data delivery capacity.35th Annual Small Satellite Conference, August 7-12, 2021, United States (Virtual

    Design of Software-Defined Radio-Based Adaptable Packet Communication System for Small Satellites

    Get PDF
    Software-defined radio (SDR) devices have made a massive contribution to communication systems by reducing the cost and development time for radio frequency (RF) designs. SDRs opened the gate to programmers and enabled them to increase the capabilities of these easily manipulated systems. The next step is to upgrade the reconfigurability into adaptability, which is the focus of this paper. This research contributes to improving SDR-based systems by designing an adaptable packet communication transmitter and receiver that can utilize the communication window of CubeSats and small satellites. According to the feedback from the receiver, the transmitter modifies the characteristics of the signal. Theoretically, the system can adopt many modes, but for simplicity and to prove the concept, here, the changes are limited to three data rates of the Gaussian minimum shift keying (GMSK) modulation scheme, i.e., 2400 bps GMSK, 4800 bps GMSK and 9600 bps GMSK, which are the most popular in amateur small satellites. The system program was developed using GNU Radio Companion (GRC) software and Python scripts. With the help of GRC software, the design was simulated and its behavior in simulated conditions observed. The transmitter packetizes the data into AX.25 packets and transmits them in patches. Between these patches, it sends signaling packets. The patch size is preselected. Alternatively, the receiver extracts the data and saves it in a dedicated file. It directly replies with a feedback message whenever it gets the signaling packets. Based on the content of the feedback message, the characteristics of the transmitted signal are altered. The packet rate and the actual useful data rate are measured and compared with the selected data rate, and the packet success rate of the system operating at a fixed data rate is also measured while simulating channel noise to achieve the desired Signal-to-Noise Ratio (SNR)

    The astrometric Gaia-FUN-SSO observation campaign of 99 942 Apophis

    Full text link
    Astrometric observations performed by the Gaia Follow-Up Network for Solar System Objects (Gaia-FUN-SSO) play a key role in ensuring that moving objects first detected by ESA's Gaia mission remain recoverable after their discovery. An observation campaign on the potentially hazardous asteroid (99 942) Apophis was conducted during the asteroid's latest period of visibility, from 12/21/2012 to 5/2/2013, to test the coordination and evaluate the overall performance of the Gaia-FUN-SSO . The 2732 high quality astrometric observations acquired during the Gaia-FUN-SSO campaign were reduced with the Platform for Reduction of Astronomical Images Automatically (PRAIA), using the USNO CCD Astrograph Catalogue 4 (UCAC4) as a reference. The astrometric reduction process and the precision of the newly obtained measurements are discussed. We compare the residuals of astrometric observations that we obtained using this reduction process to data sets that were individually reduced by observers and accepted by the Minor Planet Center. We obtained 2103 previously unpublished astrometric positions and provide these to the scientific community. Using these data we show that our reduction of this astrometric campaign with a reliable stellar catalog substantially improves the quality of the astrometric results. We present evidence that the new data will help to reduce the orbit uncertainty of Apophis during its close approach in 2029. We show that uncertainties due to geolocations of observing stations, as well as rounding of astrometric data can introduce an unnecessary degradation in the quality of the resulting astrometric positions. Finally, we discuss the impact of our campaign reduction on the recovery process of newly discovered asteroids.Comment: Accepted for publication in A&

    Strong UA(1)U_A(1) breaking in radiative η\eta decays

    Full text link
    We study the \egg, \egm and \epg decays using an extended three-flavor Nambu-Jona-Lasinio model that includes the 't~Hooft instanton induced interaction. We find that the η\eta-meson mass, the \egg, \egm and \epg decay widths are in good agreement with the experimental values when the UA(1)U_{A}(1) breaking is strong and the flavor SU(3)SU(3) singlet-octet mixing angle θ\theta is about zero. The calculated ηγγ∗\eta \gamma \gamma^\ast transition form factor has somewhat weaker dependence on the squared four-momentum of the virtual photon. The effects of the UA(1)U_A(1) anomaly on the scalar quark contents in the nucleon, the ΣπN\Sigma_{\pi N} and ΣKN\Sigma_{KN} terms and the baryon number one and two systems are also studied.Comment: 41 pages, LaTeX, 17 eps figures, uses epsf.sty and cite.st

    Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae

    Get PDF
    Traumatic brain injury (TBI) is characterized by acute neurological dysfunction and asso- ciated with the development of chronic traumatic encephalopathy (CTE) and Alzheimer’s disease. We previously showed that cis phosphorylated tau (cis P-tau), but not the trans form, contributes to tau pathology and functional impairment in an animal model of severe TBI. Here we found that in human samples obtained post TBI due to a variety of causes, cis P-tau is induced in cortical axons and cerebrospinal fluid and positively correlates with axonal injury and clinical outcome. Using mouse models of severe or repetitive TBI, we showed that cis P-tau elimination with a specific neutralizing antibody administered immediately or at delayed time points after injury, attenuates the development of neuropathology and brain dysfunction during acute and chronic phases including CTE-like pathology and dysfunction after repetitive TBI. Thus, cis P-tau contributes to short-term and long-term sequelae after TBI, but is effectively neutralized by cis antibody treatment

    Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing

    Get PDF
    Real-time monitoring of stem cells (SCs) differentiation will be critical to scale-up SC technologies, while label-free techniques will be desirable to quality-control SCs without precluding their therapeutic potential. We cultured adipose-derived stem cells (ADSCs) on top of multielectrode arrays and measured variations in the complex impedance Z* throughout induction of ADSCs toward osteoblasts and adipocytes. Z* was measured up to 17 d, every 180 s, over a 62.5–64kHz frequency range with an ECIS Zθ instrument. We found that osteogenesis and adipogenesis were characterized by distinct Z* time-courses. Significant differences were found (P = 0.007) as soon as 12 h post induction. An increase in the barrier resistance (Rb) up to 1.7 ohm·cm(2) was associated with early osteo-induction, whereas Rb peaked at 0.63 ohm·cm(2) for adipo-induced cells before falling to zero at t = 129 h. Dissimilarities in Z* throughout early induction (<24 h) were essentially attributed to variations in the cell-substrate parameter α. Four days after induction, cell membrane capacitance (Cm) of osteo-induced cells (Cm = 1.72 ± 0.10 μF/cm(2)) was significantly different from that of adipo-induced cells (Cm = 2.25 ± 0.27 μF/cm(2)), indicating that Cm could be used as an early marker of differentiation. Finally, we demonstrated long-term monitoring and measured a shift in the complex plane in the middle frequency range (1 kHz to 8 kHz) between early (t = 100 h) and late induction (t = 380 h). This study demonstrated that the osteoblast and adipocyte lineages have distinct dielectric properties and that such differences can be used to perform real-time label-free quantitative monitoring of adult stem cell differentiation with impedance sensing

    Synthesis and Electronic Structure Determination of Uranium(VI) Ligand Radical Complexes

    Get PDF
    &nbsp; &nbsp;Pentagonal bipyramidal uranyl complexes of salen ligands, N,N’-bis(3-tert-butyl-(5R)-salicylidene)-1,2-phenylenediamine, in which R = tBu (1a), OMe (1b), and NMe2 (1c), were prepared and the electronic structure of the one-electron oxidized species [1a-c]+ were investigated in solution. The solid-state structures of 1a and 1b were solved by X-ray crystallography, and in the case of 1b an asymmetric UO22+ unit was found due to an intermolecular hydrogen bonding interaction. Electrochemical investigation of 1a-c by cyclic voltammetry showed that each complex exhibited at least one quasi-reversible redox process assigned to the oxidation of the phenolate moieties to phenoxyl radicals. The trend in redox potentials matches the electron-donating ability of the para-phenolate substituents. The electron paramagnetic resonance spectra of cations [1a-c]+ exhibited gav values of 1.997, 1.999, and 1.995, respectively, reflecting the ligand radical character of the oxidized forms, and in addition, spin-orbit coupling to the uranium centre. Chemical oxidation as monitored by ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy afforded the one-electron oxidized species. Weak low energy intra-ligand charge transfer (CT) transitions were observed for [1a-c]+ indicating localization of the ligand radical to form a phenolate / phenoxyl radical species. Further analysis using density functional theory (DFT) calculations predicted a localized phenoxyl radical for [1a-c]+ with a small but significant contribution of the phenylenediamine unit to the spin density. Time-dependent DFT (TD-DFT) calculations provided further insight into the nature of the low energy transitions, predicting both phenolate to phenoxyl intervalence charge transfer (IVCT) and phenylenediamine to phenoxyl CT character. Overall, [1a-c]+ are determined to be relatively localized ligand radical complexes, in which localization is enhanced as the electron donating ability of the para-phenolate substituents is increased (NMe2 &gt; OMe &gt; tBu)

    Three monthly coral Sr/Ca records from the Chagos Archipelago covering the period of 1950-1995 A.D.: reproducibility and implications for quantitative reconstructions of sea surface temperature variations

    Get PDF
    In order to assess the fidelity of coral Sr/Ca for quantitative reconstructions of sea surface temperature variations, we have generated three monthly Sr/Ca time series from Porites corals from the lagoon of Peros Banhos (71°E, 5°S, Chagos Archipelago). We find that all three coral Sr/Ca time series are well correlated with instrumental records of sea surface temperature (SST) and air temperature. However, the intrinsic variance of the single-core Sr/Ca time series differs from core to core, limiting their use for quantitative estimates of past temperature variations. Averaging the single-core data improves the correlation with instrumental temperature (r > 0.7) and allows accurate estimates of interannual temperature variations (~0.35°C or better). All Sr/Ca time series indicate a shift towards warmer temperatures in the mid-1970s, which coincides with the most recent regime shift in the Pacific Ocean. However, the magnitude of the warming inferred from coral Sr/Ca differs from core to core and ranges from 0.26 to 0.75°C. The composite Sr/Ca record from Peros Banhos clearly captures the major climatic signals in the Indo-Pacific Ocean, i.e. the El Niño–southern oscillation and the Pacific decadal oscillation. Moreover, composite Sr/Ca is highly correlated with tropical mean temperatures (r = 0.7), suggesting that coral Sr/Ca time series from the tropical Indian Ocean will contribute to multi-proxy reconstructions of tropical mean temperatures

    Characteristics of a self-assembled fibrillar gel prepared from red stingray collagen

    Get PDF
    A translucent collagen gel was formed from a transparent acidic solution of red stingray collagen by adjusting to physiological ionic strength and pH in phosphate buffer and then incubating at 25?37°C. During fibril formation from red stingray collagen, the turbidity increased when the NaCl concentration was increased at constant pH and the rate of fibril formation was accelerated by higher pH or lower NaCl concentration. The T m of red stingray collagen fibrillar gel was estimated as 44.3 ± 3.5°C, which was higher than that of the collagen solution, 33.2°C. In addition, red stingray collagen gel maintained its shape without melting and was suitable for culture of mouse stromal cells at 37°C
    • …
    corecore