
Automatic Change of SDR Parameters' Values
During Runtime in GNURADIO for Satellite
Communication Subsystem

著者 Abbas Yasir M. O., Asami Kenichi
page range SSC21-S1-49
year 2021-07-12
URL http://hdl.handle.net/10228/00009070

Abbas 1 [35th] Annual

 Small Satellite Conference

SSC21-S1-49

Automatic Change of SDR Parameters’ Values During Runtime in GNURADIO for

Satellite Communication Subsystem

Yasir M. O. ABBAS, Kenichi Asami

Kyushu Institute of Technology, Japan

1-1 Sensuicho, Kitakyushu, Fukuoka, Japan;

abbas.yasir-mohamed899@mail.kyutech.jp

asami@mns.kyutech.ac.jp

ABSTRACT

Shifting from traditional hardware radios to the Software-Defined Radio (SDR) is becoming reality, and SDRs are

going rapidly to dominate the satellite communication subsystems. For testing designs, researchers use many tools

such as the popular GNURADIO software which programs and controls SDR devices by providing signal processing

blocks implementing the desired signals as well as hardware interface blocks. It is user-friendly and simple to

beginners. Moreover, it has powerful and advanced capabilities for more complex missions.

In some cases, we need to modify communication parameters such as frequency, data rate or modulation scheme

without relaunching the program. Many times, the values of these changes are not available until the runtime, thus

parameter’s new values need to be fed to the communication program while it is running.

As a case study, this paper presents a method of changing SDR transmit and receive frequency in GNURADIO to

compensate for the doppler shift effect.

The main code that is generated by GNURADIO in Python is modified and linked with another Python program to

calculate doppler shift frequencies. The real-time frequency value is fed to the SDR device blocks in GNURADIO

while it is running using networking protocols. The frequency calculation code is based on PyEphem library. This

program uses the two-line elements set (TLE) to know the satellite position then it uses the ground station coordinates

as an input in order to find the relative velocity which is the main factor to calculate the doppler shift frequencies. The

system is tested using a laptop, Raspberry Pi 4, LimeSDR and RTL-SDR devices.

Methods of handling such issues directly affect the efficiency of the communication which lead to more robust links

to improve satellites data delivery capacity.

Keywords: SDR, GNURADIO, PyEphem, Doppler Shift, Satellite, Communication.

INTRODUCTION:

The system is labeled as reconfigurable or adaptable if

there are easy ways to introduce changes on its

parameters. During runtime of satellites communications

systems some parameters require to be changed to

increase efficiency, security, or reliability of the mission.

This paper is experimenting changing the

communication frequency in order to compensate for the

Doppler shift effect.

The same method would work for changing gain, power,

and modulation of the system. It can as well used to

export and import variable values across systems or

within the system parts. it allows the calculation tasks to

be implemented in a separate code then only the results

are provided to where they are useful.

GNURadio software

Is a free and open-source software development toolkit

that provides signal processing blocks to implement

software radios [1]. It is widely used to control software-

defined radio (SDR) devices.

Software-Defined Radio

SDR refers to wireless communication in which the

transmitter modulation is generated or defined by a

computer. The receiver then also uses a computer to

recover the signal intelligence [2]. In space-based system

the computer is either SoC device or a field-

programmable gate array (FPGA).

The most useful feature of the SDR is the ability to

change radio parameters only by changing the software

controlling the SDR. This is the

Many recent research is carried out to maximize the

benefits SDR in reconfigurable and in adaptable radios.

Doppler Shift Effect

In communication systems in which receiver and

transmitter are not fixed and have significant relative

velocity, the transmitted signal is received with a

frequency drift. This drift is proportional to the relative

velocity between the two ends of the communication

system.

mailto:abbas.yasir-mohamed899@mail.kyutech.jp
mailto:asami@mns.kyutech.ac.jp

Abbas 2 [35th] Annual

 Small Satellite Conference

XML-RCP protocol:

It is a remote procedure call (RPC) protocol, which uses

XML to encode its calls. It uses Hypertext Transfer

Protocol HTTP as its transport mechanism.

METHODOLOGY:

In Raspberry Pi 4, GNURadio software is used to control

a LimeSDR mini device. A separate Python code (i.e.,

doppler frequency code) is written to control the

frequency of the SDR.

This “doppler frequency code” is used to calculate the

frequency of a satellite as received by an observer’s

ground station. It is developed in Windows 10 laptop by

Python-3.9 using SpyderIDE in Anaconda environment.

It uses PyEphem, which is a library that implements

astronomical algorithms for Python programming

language. It is free under the LGPL. The library is

written in Python and C. After verifying the code in

Windows, it is then implemented in a Raspberry Pi 4

device. Verifying the “doppler frequency code” is

achieved by comparison with the resulting values of two

well-known simulation software programs. i.e., Orbitron

and HamRadioDeluxe running in windows.

The whole system verification is done by transmitting

AX.25 packets between two LimeSDR mini devices

while the frequency is being changed.

DESIGN AND IMPLEMENTATION:

Several approaches can be used for changing GNURadio

variables. The best approach in terms of the simplicity

and the ability to change the variables during runtime is

found to use XML-PRC protocol.

Control SDR via GNURadio Flowgraph

GNURadio flowgraph is the main design platform for the

code that sends and receives data. The flowgraph design

and implementation will be explained in this session.

As shown in Figure 1, LimeSuite Sink (TX) block is the

operational block to control the transmitted signals, the

SDR device is selected by its serial number in the block

properties. The frequency and the gain are defined as

variables as in Figure 2. These variables’ names should

be noted because it will be used when scripting the code

of the XML-RPC Clients.

Similarly, the received signal is captured from the SDR

device by LimeSuite Source (RX) block.

The Virtual Source and Virtual Sink blocks in Figure 1

are the way of directing data flow to and from the

LimeSDR devices. Data comes from a modulator to be

transmitted by the transmitter SDR. The receiving SDR

captures the signal and forward it to the designed

demodulator in GNURadio. Audio frequency shift

keying (AFSK) modulation is used to exchange AX.25

packets, the design of the modulator and the demodulator

themselves are out of the scope of this paper, any other

modulation can be used.

Figure 1.

Figure 2.

The Calculation of the doppler frequency

This Python code imports “ephem” package. Then it gets

the position information from the Two-Line-Element

(TLE) format. The location of the observer’s ground

station and the base-frequency of the satellite should be

provided.

The code calculates the range velocity, which is the

relative velocity of the satellite with respect to the

ground station. From this value the code calculates the

doppler shift frequency using Equation 1 and 2 as shown

in Figure 3.

Fi = Fb + Fd ………….. (1)

Fd = Fb*C/(C+Vs) ……. (2)

Where:

Fi: Instant Frequency.

Fb: Base Frequency.

Fd: Doppler Shift Frequency.

C: Speed of light.

Vs: Range Velocity.

Abbas 3 [35th] Annual

 Small Satellite Conference

Figure 3.

XML-RPC Protocol implementation

The XML-RPC Protocol needs a server to be launched

in the controlled side and a client in the controlling side.

XML-RPC Server Implementation

The server opens a gate to remotely access GNURadio

functions that sets the values on the flowgraph variables.

We will use it to control the earlier explained SDR

variables in the GNURadio.

For implementation, GNURadio XMLRPC Server block

is used as shown in Figure 4.

As the operation code and the control code are both in

the same device, we use localhost IP address “127.0.

0.1”. The port number is selected by the developer. It is

chosen to be 52300.

Figure 4.

XML-RPC Client implementation:

The XML-RPC client is used as the controller. It is

where the input is entered. It is implemented using

Python code that executes the callback on the server

when a variable need to be changed. Figure 5 is showing

the function that changes SDR parameters once. It gets

the values from global variables. This function loops

within the ground station when tracking a satellite, the

frequency is changed every loop according to the values

calculated by doppler frequency code.

def changeVariables():

 global Instant_Frequency_Tx

 global Instant_Frequency_Rx

 global tx_gain

 global rx_gain
 xmlrpcDopplerFreq = xmlrpclib.Server('http://localhost:52300')

 xmlrpcDopplerFreq.set_Instant_Frequency_Tx(Instant_Frequency_Tx)

 xmlrpcDopplerFreq.set_Instant_Frequency_Rx(Instant_Frequency_Rx)

 xmlrpcDopplerFreq.set_tx_gain(tx_gain)

 xmlrpcDopplerFreq.set_rx_gain(rx_gain)

Figure 5

Note that the naming of “set_Instant_Frequency_Tx,

set_Instant_Frequency_Tx, set_tx_gain and

set_rx_gain” is based on the code generated by the

GNURadio flowgraph.

TESTS, RESULTS AND VALIDATION:

Two tests are performed to validate the system. One is to

validate the doppler frequency. The second test is to

ensure that the XML-RPC protocol is able to control the

SDR.

The test setup -as in Figure 6- consists of two LimeSDR

mini devices connected to laptop running Ubuntu

Operating System. Using GNURadio software data is

sent between the SDR devices.

The external Python code to control the frequency values

of a simulated satellite is integrated with the control

code. The satellite TLE is chosen to be in the ISS orbit

and the base frequency is set to 145.825 MHz. The

ground station is assumed to be in Kitakyushu, Japan.

Figure 6.

The doppler frequency code, which generates the instant

frequency from the TLE, is tested with the international

space station (ISS). The results are compared with the

outputs of the Orbitron software program and

HamRadioDeluxe program as shown in Figures 7, 8, 9

and 10.

Figure 7.

Figure 8.

Abbas 4 [35th] Annual

 Small Satellite Conference

Figure 9.

Figure 10.

To test the controlling code the frequencies are

monitored using “QT GUI Label” block of the

GNURadio. The calculated value that is sent via XML-

RPC protocol should appears as in Figure 11. It should

be changing because the satellite position is changing

with time.

Figure 11

The reception of the transmitted data is confirmed

listening to the AFSK packet sound and by graphs shown

in Figure 12.

Figure 12-a: Transmitted signal at the receiving SDR

Figure 12-b: The received signal after filtering.

DISCUSSION:

The measured deviation in time is found less than

1 second. For the frequency, deviation it is found

less than 30Hz. This precision is within the

acceptable range for the Ground Station satellite

communication. Comparing Figure 7 and Figure

9, the time is 9-hours different because of the time

zones. For better validation, the system needs to

be tested with a real satellite because here in this

setup both SDRs are fixed in place and the

frequency is changed in both to simulate the

moving effect.

CONCLUSION

This paper shows the details of using XML-RPC

protocol to control SDR parameters. This is handy to

implement a tracking ground station or a satellite

hopping communication system. It can also be used in

adaptive systems to control the noise and the flowchart

parameters during runtime [3] and in many other tasks.

REFERENCES

1. GNURadio, https://www.gnuradio.org/

(accessed on 1-June-2021)

2. M. N. O. Sadiku and C. M. Akujuobi,

"Software-defined radio: a brief overview," in

IEEE Potentials, vol. 23, no. 4, pp. 14-15, Oct.-

Nov. 2004, doi: 10.1109/MP.2004.1343223.

3. ABBAS, Yasir M.O.; Asami, Kenichi. 2021.

"Design of Software-Defined Radio-Based

Adaptable Packet Communication System for

Small Satellites" Aerospace 8, no. 6: 159.

https://doi.org/10.3390/aerospace8060159.

https://www.gnuradio.org/

