
Design of Software-Defined Radio-Based
Adaptable Packet Communication System for
Small Satellites

著者 Abbas Yasir M. O., Asami Kenichi
journal or
publication title

Aerospace

volume 8
number 6
page range 159-1-159-17
year 2021-06-04
URL http://hdl.handle.net/10228/00009061

doi: https://doi.org/10.3390/aerospace8060159

3.42.660

Article

Design of Software-Defined Radio-
Based Adaptable Packet
Communication System for Small
Satellites

Yasir M. O. ABBAS and Kenichi Asami

https://doi.org/10.3390/aerospace8060159

https://www.mdpi.com/journal/aerospace
https://www.scopus.com/sourceid/21100853739
https://www.mdpi.com/journal/aerospace/stats
https://www.mdpi.com
https://doi.org/10.3390/aerospace8060159

aerospace

Article

Design of Software-Defined Radio-Based Adaptable Packet
Communication System for Small Satellites

Yasir M. O. ABBAS * and Kenichi Asami

����������
�������

Citation: ABBAS, Y.M.O.; Asami, K.

Design of Software-Defined

Radio-Based Adaptable Packet

Communication System for Small

Satellites. Aerospace 2021, 8, 159.

https://doi.org/10.3390/

aerospace8060159

Academic Editor: Paolo Tortora

Received: 14 April 2021

Accepted: 31 May 2021

Published: 4 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Systems Laboratory, Engineering Department, Kyushu Institute of Technology, 1-1 Sensui, Tobata, Kitakyushu,

Fukuoka 804-8550, Japan; asami@mns.kyutech.ac.jp

* Correspondence: abbas.yasir-mohamed899@mail.kyutech.jp

Abstract: Software-defined radio (SDR) devices have made a massive contribution to communication

systems by reducing the cost and development time for radio frequency (RF) designs. SDRs opened

the gate to programmers and enabled them to increase the capabilities of these easily manipulated

systems. The next step is to upgrade the reconfigurability into adaptability, which is the focus of

this paper. This research contributes to improving SDR-based systems by designing an adaptable

packet communication transmitter and receiver that can utilize the communication window of

CubeSats and small satellites. According to the feedback from the receiver, the transmitter modifies

the characteristics of the signal. Theoretically, the system can adopt many modes, but for simplicity

and to prove the concept, here, the changes are limited to three data rates of the Gaussian minimum

shift keying (GMSK) modulation scheme, i.e., 2400 bps GMSK, 4800 bps GMSK and 9600 bps GMSK,

which are the most popular in amateur small satellites. The system program was developed using

GNU Radio Companion (GRC) software and Python scripts. With the help of GRC software, the

design was simulated and its behavior in simulated conditions observed. The transmitter packetizes

the data into AX.25 packets and transmits them in patches. Between these patches, it sends signaling

packets. The patch size is preselected. Alternatively, the receiver extracts the data and saves it in a

dedicated file. It directly replies with a feedback message whenever it gets the signaling packets.

Based on the content of the feedback message, the characteristics of the transmitted signal are altered.

The packet rate and the actual useful data rate are measured and compared with the selected data

rate, and the packet success rate of the system operating at a fixed data rate is also measured while

simulating channel noise to achieve the desired Signal-to-Noise Ratio (SNR).

Keywords: SDR; small satellite; adaptive; GNU Radio; data rate; packet; AX.25

1. Introduction

Software-defined radio (SDR) is a flexible technology that enables the design of an
adaptive communications system. Accordingly, a generic hardware design can be used to
address various communication needs, with varying frequencies, modulation schemes and
data rates [1]. The radio implementation process includes setting the filtering parameters,
such as the pass and stop band frequencies, as well as digital quadrature transformations
and data rate adjustments using up and down sampling processes.

Recent improvements in analogue to digital converter technology have led to the
development of software-defined radios with digital receivers [2].

Many satellites have adopted the SDR architecture as an experimental or secondary
subsystem, but this year—according to the ESA—the first fully SDR commercial satellite
was launched: the Eutelsat satellite “Quantum”. Eutelsat Quantum will be the first genera-
tion of universal satellites able to serve any region of the world and adjust to new business
without the need to procure and launch an entirely new satellite. The first Quantum satellite
will have a launch mass of 3500 kg, a power of 5 kW, and an all-Ku-band communications
payload mass of 450 kg [3]. Amateur operators have built many SDR-based ground stations;

Aerospace 2021, 8, 159. https://doi.org/10.3390/aerospace8060159 https://www.mdpi.com/journal/aerospace

https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://doi.org/10.3390/aerospace8060159
https://doi.org/10.3390/aerospace8060159
https://doi.org/10.3390/aerospace8060159
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/aerospace8060159
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace8060159?type=check_update&version=1

Aerospace 2021, 8, 159 2 of 17

however, it is not yet common for amateur or educational small satellites to use SDR as the
main communication subsystem. However, this will change in the near future, given the
amount of research being carried out in this field and the benefits of SDRs over traditional
radios, such as reconfigurability and adaptability.

Adaptation is one of the smartest use of the SDR. The European Space Agency (ESA)
is currently funding the Satellite Adaptive Communication Channel project (SACC), a
pioneer system intended to increase the data sent from satellites. Similarly, this paper
develops a design to be implemented in Raspberry Pi devices, which are used as satellite
subsystem processors. The design takes advantage of the SDR to reduce the cost and
simplify the complexity of the electronics design; moreover, it boosts the communication
system’s performance by implementing feedback and adaptable techniques.

In satellite communication, the Earth–satellite link is established only when the Earth
station enters the beam width of the satellite’s antenna [4].

As shown in Figure 1, the slant range is the distance between the satellite and its
ground station. Satellites arise to each specific ground station at the furthest point, then
move closer until reaching a minimum distance at 90◦ elevation. Signal attenuation is
highly dependent on the length of the line-of-sight path. As such, the maximum slant
range value should be considered when designing the link budget. The designing of any
communication system starts with the link budget analysis [5]. The link budgets of satellites
are designed to maintain connectivity in the worst case of communication. However, to
utilize the communication windows, the signal’s characteristics may be altered in order
to deliver more data to the ground station within the same period of time [6]. When the
satellite approaches the ground station’s horizon, the signal must travel a significantly
greater distance than when the satellite is at the zenith of its path over the ground station.
The graph in Figure 2 shows the typical communication window line of sight range in
kilometers for different altitude orbits.

Figure 1. Slant range variation according to the satellite’s position.

Aerospace 2021, 8, 159 3 of 17

Figure 2. Slant range vs. elevation of different orbits.

Small spacecraft (SmallSats or small satellites) include spacecraft with a mass less than
180 kg [7]. CubeSats fall under the definition of small satellites. The standards dictate that
they weigh 1.33 kg maximum and are 1 cm × 1 cm × 1 cm.

The distance between a satellite in ISS orbit and its ground station can reach more than
three times the distance when the satellite is at zenith. This directly affects the received
signal strength at the ground station.

The second column of Table 1 shows the differences in distance between the edge
points of the communication window, i.e., 5◦ and 90◦ elevation angles, for several low Earth
orbits (LEO). The third column shows the power density loss between the same edge points
excluding atmospheric attenuation. This value describes the variation in power in that
specific orbit. Since we excluded the atmospheric loss, the power loss difference is equal to
the difference in free space loss (FSL) between the edge points of the pass calculated by
Equation (1) [8].

FSL = 20 log (4πd/λ) (1)

where

Table 1. The change in slant range and transmitted power loss for a satellite between 5◦ and 90◦

elevations, calculated for different orbits. The values do not consider the atmospheric loss and

attenuation, which is also proportional to the slant range.

Orbit Altitude (km) Distance Difference (km) Power Loss Difference (dB)

400 1404.533 13.086
500 1577.976 12.373
700 1863.173 11.274

1000 2194.512 10.088

• d: slant range;
• λ : signal Wavelength.

The main goal of the research is to dynamically change the data rate of the transmission
so that it can exploit the change in the channel. This would increase the quantity of data that
can be delivered within the short communication period available for satellites in low Earth
orbit (LEO). This allows us to automatically tweak the transmitted signal characteristics and
the transceivers’ parameters, allowing the system to perform better in dynamic channels.
Table 1 explains that satellites in lower orbit would benefit more from this adaptability
than satellites in higher orbits. The distance the signal must travel to a nadir ground station
is 10 times greater than the distance the signal must travel when that satellite is at the

Aerospace 2021, 8, 159 4 of 17

acquisition of signal (AOS) point in a 1000 km altitude orbit. The distance is 20 times
greater in a 400 km altitude orbit.

Traditionally, SDRs are used to reduce the cost and the time required to develop
communication systems [9]. This paper and similar recent studies focus on improving their
performance. This paper’s is significant because it is at the last step before implementing
artificial intelligence (AI) in satellite communication systems. Adaptable systems allow
users to adjust a satellite’s amplifier along the pass to ensure compliance with regulations,
such as power density limits, while delivering adequate power to the ground station.
Adaptable systems allow satellites to maximally benefit from their potential by tuning the
link budget factors in relation to the current transmission situation in order to deliver the
maximum quantity of data to the user.

As such, the novelty of the research paper is that the design optimizes the SDR system’s
performance for small satellites, and it uses tools accessible to most satellite developers.
Most importantly, it intends to make the use of an adaptable system in CubeSats and small
satellites a reality, given that such adaptable systems are not used in CubeSats yet.

For a given received power, if we increase the rate of data transmission, the energy bit
per noise density decreases. The designed adaptable system facilitates a higher rate of data
delivery without increasing the transmission power when the received power increases
due to smaller losses of signal. In this way, the required SNR at the receiver is maintained
within the acceptable range. The relationship is shown by the following equations [10].

SNR = S/N = Pr/(B × N0) (2)

Pr = (R × Eb) (3)

SNR = R/B × Eb/N0 (4)

where

• SNR: Signal-to-noise ratio;
• Pr: Received power;
• B: Bandwidth;
• N0: Noise density;
• R: Data rate;
• Eb: Energy per bit.

Theoretically, whenever the SNR increases by 3 dB, we can transmit at double the
data rate.

Table 2 compares three different approaches to designing a communication subsystem
for small satellites. The traditional system is hardware-based, meaning that developers
need to change hardware components in order to change the satellite’s characteristics. This
paper designs a Raspberry Pi + SDR system.

Table 2. Comparison between different design approaches for communication subsystems in

small satellites.

System Flexibility Complexity Efficiency
Power

Consumption

Traditional
Hardware-based

Systems
Low Low Low Low

Raspberry Pi +
SDR Systems

High Low High Low

FPGA + SDR
Systems

High High High High

In comparison with the traditional hardware-based systems, this design is more
effective in using the available communication channel, and it has the ability to deliver

Aerospace 2021, 8, 159 5 of 17

more data. That said, the traditional systems are more robust. With specific improvements,
this design could be made more reliable.

Some SDR-based systems use field-programmable gate arrays (FPGAs) to produce and
modulate the signals of SDRs; this design is instead built to be implemented in Raspberry
Pi devices, which are easier to program for students and academic researchers. Moreover,
Raspberry Pi devices require less power and space, making them preferable for CubeSats
and small satellites.

2. Methodology

The main design tasks are implemented using GNU Radio software, while the signal
modulation and packet framing are carried out within GNU Radio’s blocks. Data inputs
and outputs are handled by the user datagram protocol (UTP) and transmission control
protocol (TCP) network protocols.

The design is implemented using a core-i7 laptop running an Ubuntu 18.04 LTS
operating system. The tests discussed in detail in the “Tests and Results” section are run on
the same core-i7 laptop to confirm its functionality and to measure its parameters. These
parameters are obtained by repeating the test several times and calculating the mean value.

Scripting is performed using the Python language. Bash script and Python are used
for testing.

This design could have been affected by the available hardware. If the design is to
be implemented in another machine, it might need some adjustments. The version of the
GNU Radio that is used is another important factor. When using a different version, the
basic blocks and their dependencies might need to be updated.

The next stage of this design is to use it in a Raspberry Pi device as a satellite subsystem.

3. Design and Implementation

This section addresses general design aspects and gives details of the software imple-
mented in the system, including the blocks of the GNU Radio flowgraphs.

3.1. Design Aspects

Feedback from the ground station transceiver is an essential part of this design, and
thus both sides of the communication link are designed. However, the satellite transceiver is
designed to support interoperability and compatibility with traditional systems. Feedback
is achieved by exchanging signaling messages between the two ends of the system.

The spaceborne transceiver can generate three types of signals to send AX.25 packets:
2400 bps GMSK, 4800 bps GMSK and 9600 bps GMSK. It sends data in patches of packets.
For LEO, the average time to pass over a given ground station is 10 min [11], and so the
length of the packet is chosen so as not to exceed 10% of this value. Between patches of
data, a signaling message is sent containing three packets of data, each at a different rate.
While sending, the satellite is also listening in order to capture feedback. According to the
feedback, the rate of downlink signal data transmission is selected. On the other hand, the
ground station transceiver replies to the signaling message with its feedback, stating the
fastest reliable transmission mode.

The AX.25 protocol is selected to ensure that the system will work smoothly with
traditional versions of the communication subsystems.

3.2. Software Development

The software code of the system requires multithreading features, as well as the ability
to run in System on Chip (SoC) devices, in order to be integrated into the satellite bus.
Therefore, the Ubuntu environment is chosen to run the system, and this allows it to be
implemented in Raspberry Pi devices and thus in satellites.

Raspberry Pi devices have a history in space, and they are currently being used in
several small satellite missions. They comply with satellite system standards.

Aerospace 2021, 8, 159 6 of 17

To develop our system, GNU Radio Companion and Python 2 were used. GNU Radio
is a free and open-source software development toolkit that provides signal processing
blocks to implement software radios [12].

The proposed process of software implementation involves generating a basic code
in GNU Radio. This basic code is then modified and linked with other segments of the
system, which are also Python programs. The main tasks of the code are to transmit and
receive the data and signaling packets, and then, according to available information, the
system parameters are altered for the next transmission session. In each session, data are
transmitted in patches of packets.

The sequence of the tasks is shown in Figure 3; the flow repeats itself every session.

Figure 3. Information flow within the system.

The satellite transceiver starts the transmission with the most robust but slowest mode,
2400 bps GMSK. Following this, the data transceiver sends three small patches of packets
for signaling. Each operates in a different mode. The ground station transceiver saves the
data and signal in local files, and replies by feedback. The satellite sides save the feedback
in a local file, and adjust the rate of data transmission for the next patch of data.

The system is highly dependent on the network transport layer’s protocols in exchang-
ing the data. It uses different ports to detect and forward data and signal packets. Figure 4
illustrates how the packets are exchanged between the ports.

As in Figure 4, seven ports are required in each transceiver. Each one has a dedicated
task and data rate. To ensure that no port attempts to transmit while another is transmitting,
the threads are organized in the code following the timeline shown in Figure 5.

In parallel with this sequence, another part of the code listens for feedback from the
receiver. Such concurrency is achievable because of the multithreading support capability
of Python. Feedback is sent by the ground station each time it receives a signaling message.
The feedback is always in the 2400 bps GMSK mode.

To ensure that the system will not enter an infinite loop if some packets of the patch
are not transmitted/received as expected, timeout timers at the transmitting and receiving
parts of the code are introduced. In the case of data packet loss, the system stops waiting for
the remaining packet, and while it correctly saves the received ones, it will not automatically
request the missing packets to be resent. With respect to future improvements, it may be
necessary to make is so that the receiver can request the retransmission of specific packets.

Aerospace 2021, 8, 159 7 of 17

Figure 4. Network port utilization.

Figure 5. Thread timing and scheduling.

3.3. GNU Radio Flowgraphs

In addition to the original GNU Radio blocks, other blocks from different Out of
Tree (OOT) modules are used to implement the flowgraphs. The following OOTs are
used in the design and testing: gr-APRS, gr-ax.25, gr-bruninga, gr-limesdr, gr-osmosdr,
gr-satellite, and gr-satnogs. Another simple OOT has been created to perform comparison
tasks. Additionally, we have attempted to control the noise and the flowchart parameters
during runtime using the XML-RPC protocol.

3.4. Data Input and Output

Data are fed into the system using the UDP Message Source block shown in Figure 6.
A separate Python script is written to feed this port with a 245-byte string of data. This
string is forwarded as the input to the following block.

Aerospace 2021, 8, 159 8 of 17

Figure 6. Data input block.

The output data is directed to TCP network ports, and the Socket PDU block of GNU
Radio shown in Figure 7 is used for this task.

Figure 7. Data input block.

3.5. Transceiver Design

3.5.1. GMSK Transmitter

The transmitter design is implemented as shown in Figure 8. The input message is
sent to an AX.25 encoder that generates bitstreams. Then, it is packed into data bytes
(8 bits) to make it appropriate input for the “GMSK Mod” block, which will perform the
modulation to GMSK. Then, the modulated baseband signal is passed through a rational
resampler to generate the desired data rate. Then, the signal is ready, and it will be saved
in a virtual sink.

Figure 8. GMSK Transmitter Design in GNU Radio.

Aerospace 2021, 8, 159 9 of 17

3.5.2. GMSK Receiver

When the receiver receives the signal, it resamples it before passing it on to the low
pass filter, and then on to demodulation, which is performed by the block “GMSK Demod”.
Its output is a bit stream (Figure 9).

Figure 9. GMSK receiver design in GNU Radio.

The AX.25 frame bits are encoded such that the ones represent a change in the actual
data bit value, while the zeros denote that the data bit value is the same as the previous
bit. Therefore, to derive the original data bits, it is necessary to use a Non-Return-to-Zero-
Inverted (NRZI) decoder block. Subsequently, a descrambler is used same as shift registers
in the hardware-based radio for the synchronization and clock recovery.

In AX.25, the functions of high-level data link control (HDLC) are used. Thus,
the “HDLC Deframer” block must discard corrupted frames via the frame check se-
quence (FCS).

Finally, the resulting bit stream is framed in AX.25 by the “HDLC to AX.25” block
before sending it to the dedicated TCP port.

3.5.3. GMSK Data Rate Selection

The resampler’s properties are responsible for the generated data rate together with
the system sampling rate and the number of samples per symbol. Its interpolation and
decimation factors control the generated data rate.

In our design, a sample rate of 500,000 samples/second and 10 samples per symbol
for the GMSK modulation are used. The transmitter’s resampler parameters are set to a
decimation factor of 24 and an interpolation factor of 125, while the receiver’s resampler
parameters are set to a decimation (“D”) factor of 125 and an interpolation (“P”) factor of
24 in order to generate a 9600-bps signal.

Equation (5) shows the relationship between these factors:

Data Rate = P/D × 1/sps × Samp_Rate (5)

where

• P: interpolation factor;
• D: decimation factor;
• sps: samples per symbol;
• Samp_Rate: system sample rate;

3.5.4. Noise Simulation

White noise is simulated by adding the signal generated by a “Noise Source” block
to the original signal before sending it to the receiver. The value of the noise voltage is
calculated using Equation (6) [13].

VNoise =
(

√
(2 × Bitsym × 10(SNRdB/10))

)

− 1 (6)

Aerospace 2021, 8, 159 10 of 17

where

• VNoise: noise voltage
• Bitsym: number of bits per symbol
• SNRdB: signal-to-noise ratio in dB

The signal-to-noise ratio (SNR) is changed to control the value of the noise voltage
while observing the reception of the signal in the other terminal. Figure 10 shows the GNU
Radio blocks used to simulate the channel noise.

𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒 = 𝑃/𝐷 × 1/𝑠𝑝𝑠 × 𝑆𝑎𝑚𝑝_𝑅𝑎𝑡𝑒

𝑉𝑁𝑜𝑖𝑠𝑒 = (√(2 × 𝐵𝑖𝑡𝑠𝑦𝑚 × 10(𝑆𝑁𝑅𝑑𝐵/10))) 1
 𝑉𝑁𝑜𝑖𝑠𝑒
 𝐵𝑖𝑡𝑠𝑦𝑚
 𝑆𝑁𝑅𝑑𝐵

Figure 10. Adding white noise to the signal.

3.5.5. Simulation Code

In the simulation, the transmitted data are fixed at a size of 245 bytes. The received
packets are counted by the receiver while being written in the dedicated file.

3.6. Code Structure

The system code is composed of four executable Python files and three text files, which
are used to save the received packets.

1. The modified GNU Radio code file:

This Python file contains the main functions that execute the GMSK transmitter and
receiver codes. It initiates the ports and makes the connections. The modifications allow it
to be run and terminated without opening the GNU Radio program. Its parameters, such
as the port numbers, data rate, running duration and operating frequency, is changed by
introducing a “parameter set” function.

2. Data management functions file:

This creates the functions to deal with the transmitted and received data. It differenti-
ates between the received packet types and save them into the correct files. It generates the
signaling packets and the feedback replies.

3. Subsystem control file:

This is the file that is run when the satellite starts sending. It creates the threads and
arranges them. It specifies the durations and delays. It controls the overall operation, as
well as the subsystem and its parameters.

4. Setting File:

The code of this file prepares the communication parameters based on the feedback.

4. Tests and Results

4.1. Transmitted and Received Signals

With the help of the “QT Sink” block in GNU Radio, the signals within the system
can be obtained at different stages and in different scenarios. Figure 11 shows the original
signals transmitted from the satellite transceiver. When these transmitted signals are
directly fed to the ground station transceiver it outputs the signals shown in Figure 12.

Aerospace 2021, 8, 159 11 of 17

Figure 11. (a–c) The transmitted signals of 2400 bps, 4800 bps and 9600 bps, respectively. No noise added.

(a) (b) (c)

Figure 12. (a–c) The received signals of 2400 bps, 4800 bps and 9600 bps, respectively. The transmission channels

are noiseless.

The plots resulting from different noise levels being added to the transmitted signals
are shown in Figure 13 and the received signals are in Figure 14 below.

(a) (b)

(c) (d)

Figure 13. Cont.

Aerospace 2021, 8, 159 12 of 17

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

−
−

−

Figure 13. (a–d) Comparison of the signals transmitted in the 2400 bps GMSK mode with different SNR values.(a) SNR = −3,

(b) SNR = 5, (c) SNR = 9, (d) SNR = 14. (e–h) Comparison of the signals transmitted in the 4800 bps GMSK mode with

different SNR values. (e) SNR = −3, (f) SNR = 5, (g) SNR = 9, (h) SNR = 14. (i–l) Comparison of the signals transmitted in

the 9600 bps GMSK mode with different SNR values. (i) SNR = −3, (j) SNR = 5, (k) SNR = 9,(l) SNR = 14.

Aerospace 2021, 8, 159 13 of 17−
−

−

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

−

−
−

Figure 14. (a–d) Comparison of signals received in the 2400 bps GMSK mode with different SNR values. (a) SNR = −3,

(b) SNR = 5, (c) SNR = 9, (d) SNR = 14. (e–h) Comparison of the signals received in the 4800 bps GMSK mode with different

SNR values. (e) SNR = −3, (f) SNR = 5, (g) SNR = 9, (h) SNR = 14. (i–l) Comparison of the signals received in the 9600 bps

GMSK mode with different SNR values. (i) SNR = −3, (j) SNR = 5, (k) SNR = 9, (l) SNR = 14.

Aerospace 2021, 8, 159 14 of 17

4.2. Transmission Duration for Different Patch Sizes

This test calculates the time needed to transmit packets at different data rates. It was
performed to select a reasonable number of packets per patch. Table 3 and Figure 15 show
the obtained results.

Table 3. The time needed to receive data in different patch sizes in the three available modes of

the design.

Packets Number GMSK9600 (s) GMSK4800 (s) GMSK2400 (s)

7 1.76 3.33 6.68
20 5.32 10.63 21.25
70 19.48 38.96 77.92

100 27.92 55.83 111.68
190 53.34 106.67 213.34

−

−
−

Figure 15. The system packet rate.

The time required to send data to the dedicated port does not depend on the data rate
as shown in Table 4.

Table 4. The results for the test measuring the time to transmit 1000 packets of data at different

data rates.

Packets Number GMSK9600 (s) GMSK4800 (s) GMSK2400 (s)

1000 5.1 5.1 5.1

4.3. Useful Data Bit Rate Measurement

The data are packetized in AX.25 format, which allows the user to include 256 bytes
of data in each frame. On the basis of Table 3 and Figure 15, the information presented in
Table 5 is extracted.

Table 5. The bit rate of the system; this is calculated by multiplying the packet rate by the number of

bits in the packet.

GMSK9600 GMSK4800 GMSK2400

Minimum packet rate
(packet/second)

3.56 1.78 0.89

Information bit rate (bit/s) 6977 3488 1744
Percentage of the full data rate (%) 72.68% 72.68% 72.68%

Aerospace 2021, 8, 159 15 of 17

4.4. Packet Loss Test

This test was performed to check the timeout functionality and to plot the packet
success rate graph of the system. Some of the packets were intentionally dropped by a
modified code to simulate packet loss. The transmitting and receiving threads ended just
after the timeout and successfully returned part of the transmission. Therefore, the first part
of the test confirms that the system will not hang out if some or all packets are dropped, and
it also confirms that the system correctly saves the received portion of data and generates a
report of the operation. In cases where the lost packets are signaling packets, the ground
station will not send feedback for the mode of the lost packets, meaning it will not be
considered in the next patch. This will not affect the communication session.

The whole patch of data will only be lost in the case of feedback loss, because of the
data rate mismatch between the two ends of the communication terminal.

To determine the packet success rate, different values of signal-to-noise ratio (SNR) are
inputted into the noise source, and for each value (200), packets are transmitted at a fixed
data rate. The received packets are monitored. This test was performed for the available
modes of transmission, i.e., 9600 bps GMSK, 4800 bps GMSK and 2400 bps GMSK. The
results are shown in Figure 16.

Figure 16. Packet success rate vs. a fixed signal-to-noise ratio of the system.

4.5. Threshold for the Change

The system was tested to determine the threshold at which it will make the change to
the other data rate. The results are shown in Figure 17.

Figure 17. Selected data rate according to the SNR value; 1, 2 and 3 represent 2400 bps, 4800 bps and

9600 bps, respectively.

Aerospace 2021, 8, 159 16 of 17

5. Discussion

Figures 11–14 show the influence of the noise on the transmitted and received signals.
The noise floor in the transmitted signal changes with the SNR value. In the received signal,
it changes with both the SNR value and the data rate value.

When using a higher data rate, we must either increase the output power, reduce the
noise, or reduce the range. Advanced satellite communication subsystems are in favor of
adaptive systems, because in non-adaptive approaches, only the lowest data rate can be
used. If this new design can achieve a 9600 bps data rate for 30% of the communication
window’s duration, this will allow the delivery of 90% more data than 2400 bps systems,
and 30% more than 4800 bps systems.

Selecting the patch size is important, as the data rate is not changed while the patch is
being transmitted. For large patches, the channel condition will change, and this might
cause packet loss. In our design, we opted for the patch transmission duration of the
slowest data rate to not exceed 1 min. As the transmission duration test showed, one
packet needs about 0.29 s, 0.57 s or 1.13 s for 9600 bps GMSK, 4800 bp GMSK or 2400 bps
GMSK, respectively. Therefore, for our system design, the patch size was selected to be
50 packets per patch.

By virtue of the socket buffer, the period required to send 1000 packets to the transmit-
ter is not affected by the data rate, as the sent packets are saved in the buffer while being
modulated and transmitted to a queue. It is important to mention that the buffer size is
crucial when implementing the system in embedded systems. The transmission duration
test was performed in order give available data for comparison when testing the system in
the real hardware.

The results of the useful data bit rate showed that it was a little below the ideal value;
given that the AX.25 frame can be 330 bytes, the ideal percentage of useful data in the
AX.25 packet is 77.57% (256/330). Our results deviated by 7% from the ideal percentage.
This deviation was mainly due the introduced delays and the time between packets being
received and processed.

The system minimizes the possibility of losing the feedback by transmitting it in
the most robust mode. If the satellite cannot receive the uplink, the ground station will
probably not receive the downlink, because it is common practice to make the uplink
margin higher than the downlink margin in the link budget design.

For the packet success rate test, the timeout of reading the packets influences the
success of the reception. In the first attempts, this delay was set lower than the required
time, so the test resulted in a high packet loss, even with a strong SNR. The test gave the
expected results after the timeout delay was adjusted to be 300 milliseconds higher than
the average time required to receive one packet (10 milliseconds in the first attempt). The
resulting graph was structured as expected.

As expected, and as shown in Figure 17, the system’s data rate doubles whenever the
SNR is raised by 3 dB.

6. Conclusions

This research proves the viability and feasibility of developing an adaptable system
for small satellites using commercial off-the-shelf components. The software design of
the system is verified. In this research, we created an open-source tool that is compatible
with the Raspberry Pi devices already used in small satellites. Next, the technology must
be demonstrated by testing the hardware implementation and creating an experimental
subsystem to be operated from space. This will be discussed in detail in the following
paper. Adaptive systems are indeed the future of satellite communication, especially for
low Earth orbits.

Author Contributions: Conceptualization, Y.M.O.A. and K.A.; data curation, Y.M.O.A.; formal

analysis, Y.M.O.A.; funding acquisition, K.A.; investigation, Y.M.O.A.; methodology, Y.M.O.A.;

project administration, K.A.; resources, Y.M.O.A. and K.A.; software, Y.M.O.A.; supervision, K.A.;

Aerospace 2021, 8, 159 17 of 17

validation, Y.M.O.A.; visualization, Y.M.O.A.; writing—original draft, Y.M.O.A.; writing—review

and editing, Y.M.O.A. and K.A. All authors have read and agreed to the published version of

the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Maheshwarappa, M.R.; Bridges, C.P. Software Defined Radios for Small Satellites. In Proceedings of the NASA/ESA Conference

on Adaptive Hardware and Systems (AHS), Montreal, QC, Canada, 15–18 June 2015; Available online: https://www.researchgate.

net/publication/268196098_Software_defined_radios_for_small_satellites (accessed on 14 April 2021).

2. Nivin, R.; Rani, J.S.; Vidhya, P. Design and hardware implementation of reconfigurable nano satellite communication system

using FPGA based SDR for FM/FSK demodulation and BPSK modulation. In Proceedings of the 2016 International Conference

on Communication Systems and Networks (ComNet), Thiruvananthapuram, India, 21–23 July 2016; pp. 1–6. [CrossRef]

3. Eutelsat Quantum—A New Generation Communication Satellite. Available online: https://directory.eoportal.org/web/eoportal/

satellite-missions/content/-/article/eutelsat-quantum (accessed on 21 May 2021).

4. Cheruku, D. Satellite Communication; IK International Publishing House: Delhi, India, 2010; p. 37.

5. Pratt, T.; Allnutt, J. Satellite Communications; Wiley: Hoboken, NJ, USA, 2019.

6. Abbas, Y.M.O.; Asami, K. Testing and Implementation of a reconfigurable data-rate communication subsystem in small satellite

using SDR. In Proceedings of the 71st International Astronautical Congress (IAC2020), Washington, DC, USA, 12–14 October 2020.

7. What Are SmallSats and CubeSats. Available online: https://www.nasa.gov/content/what-are-smallsats-and-cubesats (accessed

on 21 May 2021).

8. Awan, A.; Qi, Z.; Shan, H. Co-operative Admission Control and Optimum Power Allocation underlying 5G-IoT Networks

aided D2D-Satellite Communication. In Proceedings of the 2020 International Wireless Communications and Mobile Computing

(IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 1025–1030.

9. Heuberger, A.; Mehnert, M.; Burkhardt, F.; Oschek, J. Advanced receiver module for satellite standard ETSI-SDR (ESDR). In

Proceedings of the IEEE 13th International Symposium on Consumer Electronics 2009, Kyoto, Japan, 25–28 May 2009; pp. 765–768.

10. Ya’acob, N.; Tajudin, N.; Sarnin, S.S.; Ab Rahim, S.A.; Manut, A. Link Budget and Noise Calculator for Satellite Communication. J.

Phys. Conf. Ser. 2019, 1152, 012021. Available online: https://iopscience.iop.org/article/10.1088/1742-6596/1152/1/012021/pdf

(accessed on 14 April 2021).

11. Carvalho, R. Optimizing the Communication Capacity of a Ground Station Network. J. Aerosp. Technol. Addit. Manag. 2019, 11.

Available online: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462019000100320 (accessed on 14 April

2021). [CrossRef]

12. Vachhani, K.; Mallari, R.A. Experimental study on wide band FM receiver using GNU Radio and RTL-SDR. In Proceedings of

the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, India, 10–13

August 2015; pp. 1810–1814. Available online: https://www.researchgate.net/publication/282665950_Experimental_study_on_

wide_band_FM_receiver_using_GNURadio_and_RTL-SDR (accessed on 14 April 2021).

13. Rodriguez Leon, R.; Asami, K.; Okuyama, K.-I. Optimization of a Nano-Satellite Communication System Through a Software

Defined Radio (SDR) Platform Implementation. J. Aeronaut. Space Technol. 2020, 13, 1–16. Available online: http://www.jast.hho.

edu.tr/index.php/JAST/article/view/379 (accessed on 14 April 2021).

https://www.researchgate.net/publication/268196098_Software_defined_radios_for_small_satellites
https://www.researchgate.net/publication/268196098_Software_defined_radios_for_small_satellites
http://doi.org/10.1109/CSN.2016.7823976
https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/eutelsat-quantum
https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/eutelsat-quantum
https://www.nasa.gov/content/what-are-smallsats-and-cubesats
https://iopscience.iop.org/article/10.1088/1742-6596/1152/1/012021/pdf
https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462019000100320
http://doi.org/10.5028/jatm.v11.1026
https://www.researchgate.net/publication/282665950_Experimental_study_on_wide_band_FM_receiver_using_GNURadio_and_RTL-SDR
https://www.researchgate.net/publication/282665950_Experimental_study_on_wide_band_FM_receiver_using_GNURadio_and_RTL-SDR
http://www.jast.hho.edu.tr/index.php/JAST/article/view/379
http://www.jast.hho.edu.tr/index.php/JAST/article/view/379

	Introduction
	Methodology
	Design and Implementation
	Design Aspects
	Software Development
	GNU Radio Flowgraphs
	Data Input and Output
	Transceiver Design
	GMSK Transmitter
	GMSK Receiver
	GMSK Data Rate Selection
	Noise Simulation
	Simulation Code

	Code Structure

	Tests and Results
	Transmitted and Received Signals
	Transmission Duration for Different Patch Sizes
	Useful Data Bit Rate Measurement
	Packet Loss Test
	Threshold for the Change

	Discussion
	Conclusions
	References

