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Abstract In order to assess the fidelity of coral Sr/Ca for

quantitative reconstructions of sea surface temperature

variations, we have generated three monthly Sr/Ca time

series from Porites corals from the lagoon of Peros Banhos

(71�E, 5�S, Chagos Archipelago). We find that all three

coral Sr/Ca time series are well correlated with instru-

mental records of sea surface temperature (SST) and air

temperature. However, the intrinsic variance of the single-

core Sr/Ca time series differs from core to core, limiting

their use for quantitative estimates of past temperature

variations. Averaging the single-core data improves the

correlation with instrumental temperature (r [ 0.7) and

allows accurate estimates of interannual temperature vari-

ations (*0.35�C or better). All Sr/Ca time series indicate a

shift towards warmer temperatures in the mid-1970s, which

coincides with the most recent regime shift in the Pacific

Ocean. However, the magnitude of the warming inferred

from coral Sr/Ca differs from core to core and ranges from

0.26 to 0.75�C. The composite Sr/Ca record from Peros

Banhos clearly captures the major climatic signals in the

Indo-Pacific Ocean, i.e. the El Niño–southern oscillation

and the Pacific decadal oscillation. Moreover, composite

Sr/Ca is highly correlated with tropical mean temperatures

(r = 0.7), suggesting that coral Sr/Ca time series from the

tropical Indian Ocean will contribute to multi-proxy

reconstructions of tropical mean temperatures.

Keywords Porites � Indian Ocean � Trace elements �
El Niño–southern oscillation � Pacific decadal oscillation

Introduction

The Sr/Ca ratio of coral aragonite is a widely used tool for

deriving high-resolution proxy records of past sea surface

temperatures. Coral Sr/Ca measurements have been

employed to study many key periods of past climates,

including the Little Ice Age (e.g., Watanabe et al. 2001;

Zinke et al. 2004), the Holocene (e.g., Beck et al. 1997;

Correge et al. 2000), the Younger Dryas (Correge et al.

2004), and glacial/interglacial cycles (e.g., Hughen et al.

1999; Tudhope et al. 2001; Felis et al. 2004). Application

of the Sr/Ca paleothermometer relies on the assumption

that coral Sr/Ca varies predictably with temperature, and

that seawater Sr/Ca is invariant on millennial timescales

due to the long residence time of Sr and Ca in the ocean

(e.g., Beck et al. 1992). Thus, unlike the oxygen isotope

ratios (d18O) of coral aragonite, which vary in response to

temperature and changes in the d18O of seawater, coral

Sr/Ca should be sensitive to temperature only.

However, the accuracy of quantitative SST estimates

derived from coral Sr/Ca has been challenged recently by

evidence that physiological processes influence skeletal

chemistry (e.g., Cohen et al. 2001, 2002; Meibom et al.
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2003, 2006; Sinclair et al. 2006). Ion microprobe analysis

has documented large trace element heterogeneities in

corals that cannot be explained by SST variations and are

believed to be metabolic in origin (Cohen et al. 2001, 2002;

Meibom et al. 2003). Meibom et al. (2003) argue that this

will also severely limit the accuracy of Sr/Ca thermometry

by conventional sampling techniques.

At present, there are few long-term reproducibility stud-

ies of monthly coral Sr/Ca records employing conventional

sampling techniques, and those that exist do not cover more

than the past 25 years (e.g., Alibert and McCulloch 1997;

Marshall and McCulloch 2002; Stephans et al. 2004; Felis

et al. 2004). Also, real in situ calibrations of coral Sr/Ca are

at present limited to about ten years (see Alibert and

McCulloch 1997; Marshall and McCulloch 2002; Swart

et al. 2002; Felis et al. 2004; Ourbak et al. 2006). This is too

short to assess the ability of coral Sr/Ca as a proxy for year-

to-year SST variations, let alone decadal to interdecadal SST

changes. Recently published coral Sr/Ca records covering

the past hundreds of years indicate some problems with the

Sr/Ca thermometer, particularly on decadal to secular time

scales (e.g., Linsley et al. 2004, 2006; Quinn et al. 2006).

In the Indian Ocean, time-dependent variations in coral

d18O are often dominated by the freshwater cycle associ-

ated with the monsoon circulation, so that quantitative

temperature variations cannot be inferred (e.g., Pfeiffer

et al. 2004a, b; Timm et al. 2005). Hence, additional pa-

leotemperature estimates using elemental indicators such

as Sr/Ca are extremely important (e.g., Zinke et al. 2004,

2005; Pfeiffer et al. 2006).

Here, we compare three monthly resolved Sr/Ca time

series covering the time period of 1950–1995. The Sr/Ca

time series were generated from three different coral cores

drilled in the lagoon of Peros Banhos (Chagos Archipelago;

71�E, 5�S), an atoll situated in the central Indian Ocean,

where rainfall is high. Previous analysis of d18O and Sr/Ca

measured in one of the cores from Peros Banhos has shown

that d18O primarily records rainfall variations (Pfeiffer et al.

2004a, b, 2006; Timm et al. 2005), while Sr/Ca shows a

stable relationship with local sea surface temperature

and appears to be a good temperature proxy. In this study, we

will explore the reproducibility and fidelity of the Sr/Ca

thermometer on interannual to interdecadal time scales.

We will demonstrate that single-core data are generally

reproducible, despite uncertainties, and that quantitative

reconstructions of long-term SST variations are possible

using a composite, multi-core Sr/Ca reconstruction.

Furthermore, a comparison with both instrumental and

proxy-based indices of major climatic modes such as the El

Niño–southern oscillation (ENSO) and the Pacific decadal

oscillation (PDO) demonstrates that coral Sr/Ca captures

large-scale climate variations in the Indo-Pacific sector.

Regional setting

The Chagos Archipelago, also known as the British Indian

Ocean Territory (BIOT), is situated on the southernmost

part of the Chagos–Laccadive Ridge, in the geographical

centre of the Indian Ocean. The archipelago includes five

true atolls (Blenheim Reef, Diego Garcia, Egmont, Peros

Banhos and Salomon), a mostly submerged atoll (Great

Chagos Bank), and a number of submerged banks

(including Speakers Bank, Pitt Bank and Centurion Bank)

(Fig. 1) (Spalding et al. 2001). Peros Banhos is the most
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Archipelago. Grey squares
mark Peros Banhos and Diego

Garcia, where air temperature

data is available (WMO Station

ID 6196700). b Map of Peros
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location of the coral cores
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north-westerly Chagos Atoll, located at 71.5�E and 5.2�S

(Fig. 1b). The atoll covers an area of 463 km2 and rises

steeply from 2 km depth. Numerous islands are scattered

around the rim, separated by channels that afford good

water exchange with the open ocean (Spalding et al. 2001).

The climate of the Chagos Archipelago is dominated by

the seasonal reversal of the monsoon. From October to

April, winds are light or moderate and generally from the

north-west (Sheppard et al. 1999). The Chagos then lies in

the intertropical convergence zone (ITCZ) which forms in

a narrow band across the tropical Indian Ocean, and pre-

cipitation is high. During the rest of the year, the south-east

trade winds blow strongly (Sheppard et al. 1999). SST has

an approximately bimodal distribution with maxima in

December–January and March–April (Sheppard et al.

1999).

Historical temperature data

The optimal interpolation SST (OISST), version 2 (Reynolds

et al. 2002) includes satellite-based SST measurements

and provides a continuous time series of global SSTs since

1982. In the 1� 9 1� grid centred at 70.5�E, 5.5�S, which

includes Peros Banhos, the OISST indicates mean temper-

atures of 28.40�C. The average annual cycle is 1.85�C.

Recent El Niño events lead to a warming of 0.5–1.5�C. The

magnitude of these anomalous SST variations is small, and

lies within the range of observational errors (Annamalai et al.

1999), resulting in a poor signal-to-noise ratio of Indian

Ocean SST data.

Local air temperature data are only available from

Diego Garcia (72.4�E, 7.3�S; WMO Station ID 6196700),

an atoll in the south-west of the Chagos Archipelago

(Fig. 1a). The data has been quality controlled (Baker et al.

1994), but it is not continuous. In total, 25 years of data are

available over the past 50 years. Mean air temperatures

measured at Diego Garcia are 27.14�C, with an average

annual cycle of 1.99�C.

Historical SST data collected primarily by ships-of-

opportunity has been summarized in the comprehensive

ocean atmosphere data set (COADS) to produce monthly

averages on a 2� 9 2� grid basis (Woodruff et al. 1998).

COADS only contains actual historical SST measurements.

In the grid including Peros Banhos, the data is discontin-

uous, and prior to 1968, there is not a single year with

at least one SST observation per month. We therefore

extracted SST data from the extended reconstructed SST

(ERSST), version 2 (Smith and Reynolds 2004). The

ERSST is based on the available COADS data, and uses

sophisticated statistical methods to reconstruct SST in

times of sparse data. From the ERSST, we extract data in

the grid centred at 70�E, 6�S. Over the 1950 to 1995 per-

iod, the ERSST averages 28.13�C, with an average annual

cycle of 1.91�C. SST time series from other gridded SST

products (HadISST, Rayner et al. 2003; OS SST, Kaplan

et al. 1998) agree well with the ERSST time series in the

grid including Peros Banhos (note that all gridded SST

products are mainly based on COADS data).

Materials and methods

Coral sampling

The coral cores were collected in February 1996 from three

massive Porites corals growing in the lagoon of Peros

Banhos Atoll (Fig. 1b; Table 1). Core GIM derives from a

Porites solida colony living in a water depth of 3 m in a

channel between Ile Diamant and Grand Ile Mapou, where

tidal currents afford good water exchange with the open

ocean. Core COI-5 was retrieved from a Porites lobata

coral living on the lagoon side of Ile du Coin, in very

shallow water (1.8 m water depth). Core PIE was taken

from a Porites solida colony growing in a water depth of

2.6 m on the lagoon side of Ile Pierre.

After drilling, the cores were washed with freshwater,

air dried, and then cut into 5 mm thick slabs. The slabs

were cleaned in an ultrasonic bath with de-ionized water

for 15 min and then oven dried at 40�C. X-ray images of

core GIM and core PIE show very distinct annual density

bands, while the density bands of COI-5 are not very clear.

For Sr/Ca analysis, we chose a physical sample spacing

of 1 mm, which yielded on average 12–13 samples per year

(Table 1). Samples were taken along the maximum axis of

growth using a 0.6 mm dental drill. All cores were sampled

from August 1949 to February 1996.

Analytical procedures

Sr/Ca ratios were measured at the University of Kiel with a

Spectro Ciros CCD SOP inductively coupled plasma

Table 1 The Chagos corals

All cores were drilled in the

Lagoon of Peros Banhos Atoll

GIM Grand Ile Mapou, COI-5
Ile du Coin, PIE Ile Pierre

Core Coral species Longitude Latitude Water depth (m) Samples per year

GIM Porites solida 71�45.510E 5�15.080S 3 13.2 (±3.8)

COI-5 Porites solida 71�45.860E 5�26.040S 1.8 12.4 (±4.9)

PIE Porites lobata 71�44.660E 5�16.660S 2.6 13.6 (±3.8)
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optical emission spectrometer (ICP-OES), which simulta-

neously collects the respective elemental emission signals,

following a combination of the techniques described by

Schrag (1999) and de Villiers et al. (2002). The sample

solution is prepared by dissolving approximately 0.5 mg of

coral powder in 1.00 mL HNO3 70%. The working solution

is prepared by serial dilution of the sample solution with

HNO3 2% to get a concentration of ca. 8 ppm Ca. Standard

solution is prepared by dilution of 1.00 mL of the stock

solution (0.52 grams of homogenized coral powder from an

in-house standard in 250 mL HNO3 2%) with 2.00 mL

HNO3 2%. Sr and Ca lines, which are used for this mea-

surement, are 407 and 317 nm, respectively. Analytical

precision on Sr/Ca determinations is 0.15% RSD or 0.01

mmol/mol (1r).

Coral chronology

The coral chronologies were developed based on the sea-

sonal cycle in Sr/Ca. We assigned 15 August to the highest

Sr/Ca ratios measured in any given year, because August is

on average the coldest month at Chagos. We then inter-

polated linearly between these anchor points to obtain age

assignments for all other Sr/Ca measurements. In a second

step, the Sr/Ca data was interpolated to 12 equidistant

points per year to obtain monthly time series. This

approach creates a non-cumulative time scale error of 1–2

month in any given year, because the exact timing of

lowest (highest) SST varies. However, with this method the

coral age model is independent from instrumental data, and

at Peros Banhos, actual SST measurements are sparse prior

to 1968. Annual mean values of coral Sr/Ca were computed

from the 12 monthly values of each year (January to

December averages, with the year labelled according to

January).

Results

Monthly Sr/Ca time series of GIM, COI-5 and PIE are

shown in Fig. 2. All Sr/Ca series display clear seasonal

cycles, as well as significant interannual to interdecadal

variability. Basic statistics (means and standard deviations)

are indicated in Fig. 2. GIM and COI-5 have more or less

identical mean values (8.744 and 8.747 mmol/mol,

respectively), while the mean value of PIE is higher (8.832

mmol/mol). Standard deviations (1r) range from 0.042

(GIM) to 0.061 mmol/mol (PIE) for monthly time series,

and from 0.025 (GIM) to 0.042 mmol/mol (COI-5) for

annual means. Correlation coefficients between the annual

mean Sr/Ca time series are: r = 0.38, P \ 0.05 (GIM vs.

COI-5), r = 0.54, P \ 0.001 (GIM vs. PIE), and r = 0.54,

P \ 0.001 (COI-5 vs. PIE).

The individual time series have been stacked to form a

composite Sr/Ca series (Fig. 2d). The composite is the

arithmetic mean of GIM, COI-5 and PIE. Composite Sr/Ca

has a mean value of 8.774 mmol/mol and a standard

deviation (1r) of 0.043 (monthly data) and 0.028 mmol/

mol (annual means).

Table 2 summarizes linear regression equations between

the annual mean Sr/Ca time series and instrumental tem-

perature data (ERSST from the grid including Peros

Banhos and air temperature measured at Diego Garcia). All

Sr/Ca time series are significantly correlated with the

instrumental temperature records, with r values ranging

between 0.5 (COI-5 vs. ERSST) and 0.84 (composite Sr/Ca

vs. air temperature). The estimated Sr/Ca–temperature

relationship ranges between -0.035 (±0.01) (GIM vs. air

temperature) and -0.100 (±0.02) mmol/(mol �C) (PIE vs.

ERSST). With the exception of core PIE, all Sr/Ca time

series correlate better with air temperature (Table 2).

Discussion

Single-core Sr/Ca time series

While the mean Sr/Ca values of GIM and COI-5 agree

well, Sr/Ca of core PIE, taken less than 10 km to the south

of core GIM, is offset by more than 0.08 mmol/mol. Based

on published Sr/Ca–temperature relationships that typically

range from -0.04 to -0.08 mmol/(mol �C) (e.g., Marshall

and McCulloch 2002; Swart et al. 2002), this would indi-

cate a temperature difference of 1–2�C between the two

sites. As PIE derives from the inner lagoon of Peros

Banhos, while GIM is from a channel connecting the

lagoon and the open ocean, we cannot rule out this possi-

bility. However, absolute offsets in mean Sr/Ca ratios of

different coral samples from the same reefs have been

found at other locations (e.g., Linsley et al. 2006). While it

is not clear what causes these offsets, they are often

attributed to non-environmental factors (e.g., de Villiers

et al. 1995; Linsley et al. 2006), in analogy to coral d18O,

which typically shows different absolute values in indi-

vidual coral colonies that are attributed to ‘vital’ effects

(e.g., McConnaughey 1989; Linsley et al. 1999).

The correlation between the three annual mean Sr/Ca

time series from Peros Banhos indicates that time-depen-

dent variations of Sr/Ca are generally reproducible.

However, the Sr/Ca time series also show different stan-

dard deviations, e.g., their intrinsic variance differs.

A rigorous test for the fidelity of coral proxies as indi-

cators of anomalous temperature changes is the calibration

of the annual mean proxy time series (e.g., Quinn et al.

1998; Crowley et al. 1999). This procedure effectively

removes the seasonal cycle, which tends to inflate the
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correlation between the proxy and instrumental tempera-

ture, and the resulting correlation only reflects the ability of

the coral proxies as recorders of interannual and long-term

temperature variability. In the central Indian Ocean,

interannual SST variations are small (Annamalai et al.

1999). As a result, the signal-to-noise ratio of both

instrumental temperature and Sr/Ca proxy data is low.

Despite these problems, all three single-core Sr/Ca time

series from Peros Banhos are significantly correlated with

instrumental temperature (Table 2).

The three single-core Sr/Ca time series from Peros

Banhos show fairly large variations in the estimated Sr/Ca–

temperature relationship (Table 2). Clearly, the slope of the

Sr/Ca temperature relationship depends on (1) the tem-

perature data, and (2) the proxy time series. This is to be

expected, as all time series presented in this study, instru-

mental and proxy, have different standard deviations

around their mean, i.e., their intrinsic variance differs.

Nevertheless, taking into account the statistical uncertain-

ties, the estimated Sr/Ca–temperature slope values

presented in Table 2 are all consistent with previously

published values, which range from -0.033 to -0.090

mmol/(mol �C) (see Swart et al. 2002, their Table 1 for a

summary). Few of these calibration studies, however,
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actually use real in situ SST measurements. Instead, most

rely on other temperature data sets for calibration, either

local SST records measured in nearby reefs (e.g., de

Villiers et al. 1995; Marshall and McCulloch 2002), or

grid-scale SST data extracted from various global SST

products (e.g., Gagan et al. 1994; Marshall and McCulloch

2001). Therefore, it is difficult to assess whether the

observed spread in the Sr/Ca–SST relationship is due to (1)

metabolic effects (e.g., de Villiers et al. 1995; Cohen et al.

2001, 2002; Meibom et al. 2003), (2) local environmental

conditions, e.g., site specific differences in temperature

variability, or (3) a combination of the two.

Alibert and McCulloch (1997) published in situ cali-

brations for Porites sp. corals from the Great Barrier Reef,

and estimated a Sr/Ca–temperature relationship of -0.061

mmol/(mol �C). Later, Marshall and McCulloch (2002)

found slightly lower values (-0.58 and -0.59 mmol/(mol

�C), respectively), but noted that all calibrations are within

the error limits of each other. Felis et al. (2004) performed

an in situ calibration for Porites sp. corals from the

northern Red Sea, and obtained a coral Sr/Ca–temperature

relationship of -0.0597 mmol/(mol �C). To further eval-

uate our Sr/Ca time series, we therefore decided to use a

Sr/Ca–temperature dependence of -0.06 mmol/(mol �C),

rather than arbitrarily choosing one of our own calibrations.

Thus, we practically assume that -0.06 mmol/(mol �C)

reflects the ‘‘true’’ Sr/Ca–temperature relationship, while

the range of slope values observed in our study (and many

others) is either due to inadequate instrumental data or

other unknown factors that lead to a bias in coral Sr/Ca.

Furthermore, as the absolute values appear uncertain, we

will centre the Sr/Ca time series by subtracting the mean

value over the 1950–1995 period.

Figure 3 compares the annual mean Sr/Ca time series of

GIM, COI-5 and PIE with ERSST and air temperature,

scaled so that -0.06 mmol/mol corresponds to a warming

of 1�C. Of all three single-core time series, GIM shows the

best agreement with instrumental temperature variations

(Fig. 3a). The standard deviation of GIM (0.025 mmol/mol,

which would translate to 0.42�C) more or less equals the

standard deviation of air temperature measured at Diego

Garcia (0.47�C), but is larger compared to the ERSST

(0.25�C). In contrast, COI-5 and PIE indicate larger

Table 2 Linear regression

equations and correlation

coefficients between annual

mean coral Sr/Ca, ERSST from

the grid including Peros Banhos

and air temperature measured at

Diego Garcia

Time period 1950–1995. r,

error of regression (1r). See text

for discussion

Coral core Regression equation r P r

ERSST (70�E/6�S)

GIM Sr/Ca = -0.050(±0.01) 9 SST + 10.15(±0.35) -0.52 \0.001 0.02

COI-5 Sr/Ca = -0.083(±0.02) 9 SST + 11.08(±0.60) -0.50 \0.001 0.04

PIE Sr/Ca = -0.100(±0.02) 9 SST + 11.59(±0.44) -0.68 \0.001 0.03

Composite Sr/Ca Sr/Ca = -0.077(±0.01) 9 SST + 10.94(±0.34) -0.70 \0.001 0.02

Air temperature

GIM Sr/Ca = -0.035(±0.01) 9 T + 9.70(±0.25) -0.63 \0.001 0.02

COI-5 Sr/Ca = -0.076(±0.01) 9 T + 10.81(±0.31) -0.81 \0.001 0.03

PIE Sr/Ca = -0.053(±0.01) 9 T + 10.27(±0.36) -0.64 \0.001 0.03

Composite Sr/Ca Sr/Ca = -0.055(±0.01) 9 T + 10.26(±0.20) -0.84 \0.001 0.02
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temperature variations (0.7 and 0.62�C, respectively) than

either of the instrumental temperature series (Fig. 3b, c).

Thus, assuming that a ‘‘true’’ and universally applicable

Sr/Ca–temperature relationship exists, differences in the

intrinsic variance of the three Sr/Ca time series from Peros

Banhos would translate into different estimates of local

temperature variability. We do not know whether this

reflects actual differences in local temperature variability at

the sites where the corals were drilled, or time-varying

metabolic influences that bias the Sr/Ca thermometer (e.g.,

Cohen et al. 2001, 2002; Meibom et al. 2003). However,

similar difficulties also occur in other Sr/Ca time series

from other regions (e.g., Linsley et al. 2004, 2006), and we

therefore believe that the calibration problems we encoun-

tered go well beyond this particular site in the Indian Ocean.

We conclude that the use of single-core Sr/Ca records for

quantitative estimates of past temperature variations is not

free of problems.

Composite Sr/Ca

The annual composite Sr/Ca time series correlates much

better with instrumental temperature data than each of the

single-core records alone (Table 2), suggesting that aver-

aging single-core time series effectively reduces the

noisiness of the Sr/Ca data. Taking into account the sta-

tistical uncertainties, the relationship between composite

Sr/Ca and air temperature measured at Diego Garcia is

consistent with the slope estimates of Alibert and McCul-

loch (1997) and Marshall and McCulloch (2002) (Table 2).

Figure 4 compares the centred composite Sr/Ca record,

scaled so that -0.06 mmol/mol corresponds to a warming

of 1�C, with instrumental temperature data. We have

computed error bars by calculating the standard deviation

of the three single-core Sr/Ca series (Fig. 4). We note that

within these uncertainty limits, composite Sr/Ca agrees

very well with air temperature measured at Diego Garcia,

and is fairly consistent with the ERSST data from the grid

including Peros Banhos (Fig. 4a). The temperature varia-

tions inferred from composite Sr/Ca are remarkably

accurate: the standard deviation of the residual calculated

by subtracting temperature variations inferred from Sr/Ca

and instrumental temperatures is 0.28 (air temperature) and

0.35�C (ERSST) (Fig. 4b). However, assuming a Sr/Ca–

temperature relationship of -0.06 mmol/(mol �C), the

standard deviation of composite Sr/Ca (0.028 mmol/mol,

Fig. 2) is identical with the standard deviation of air tem-

perature (0.47�C), but almost twice as large as expected

based on the ERSST.

To further explore this problem, we have computed

scatter plots of composite Sr/Ca, air temperature and

ERSST (Fig. 5). Figure 5 a compares annual mean air

temperature from Diego Garcia with annual mean ERSST

from the grid including Peros Banhos. Clearly, the intrinsic

variance of the air temperature series is larger (Fig. 5a).

Figure 5b compares composite Sr/Ca and ERSST. Com-

posite Sr/Ca has been scale so that -0.06 mmol/mol

corresponds to a warming of 1�C. Again, the intrinsic

temperature variance indicated by Sr/Ca is higher than

expected based on the ERSST data (Fig. 5b). However,

composite Sr/Ca shows almost exactly the same relation-

ship with ERSST as the air temperature data from Diego

Garcia (the two regression lines are within the error limits of

each other) (compare Fig. 5a, b). Composite Sr/Ca and

annual mean air temperature are highly correlated (r =

0.84), and the estimated Sr/Ca–temperature relationship is

not significantly different from the estimates of Alibert and

McCulloch (1997) and Marshall and McCulloch (2002)

(Table 2; Fig. 5c). This excellent match between tempera-

tures inferred from our composite Sr/Ca record and

measured air temperatures from Diego Garcia is remark-

able, as Diego Garcia and Peros Banhos are separated by

almost 2� of latitude. Thus, we conclude that despite the

problems described in our study, coral Sr/Ca is generally

under strong thermodynamic control and mainly sensitive

to temperature. The uncertainties of single-core Sr/Ca time

series can be effectively minimized by averaging a few

independent proxy series. We would not expect this if

temporal Sr/Ca variations were dominated by metabolic

influences. For example, interannual to decadal d13C vari-

ations in hermatypic corals, which are known to be

primarily affected by metabolic processes, are neither
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reproducible, nor can they be unequivocally related to any

environmental parameter (e.g., Guilderson and Schrag

1999). At Peros Banhos, we encountered similar problems

with Mg/Ca variations, also believed to be under strong

metabolic control (e.g., Sinclair et al. 2006): Mg/Ca ratios

measured at the same sub-samples as the Sr/Ca data

presented here (not shown) are neither reproducible, nor can

they be related to temperature or other environmental

parameters.

Furthermore, although it is very likely that some uncer-

tainties of the Sr/Ca thermometer result from problems of

the coral proxy, our study also shows that gridded SST

products are not ideal for proxy calibration (Fig. 5). It

appears that grid-SST may not adequately represent the

interannual to decadal temperature variability recorded by

the coral proxy. While this may be due to the large spatial

scales represented by grid-data, we speculate that many

shallow-water corals may also experience larger local

temperature variations compared to open ocean sea surface

temperatures. In this case, grid-SST should not be used as a

substitute for coral Sr/Ca measurements. For example, if the

actual temperature variability at a coral site is larger than

the variability of grid-SST, d18O seawater reconstructions

calculated by subtracting grid-SST from measured coral

d18O (e.g., Asami et al. 2004; Linsley et al. 2006) would

systematically overestimate d18O seawater variability.

The temperature shift in the mid-1970s

In the mid-1970s, a major climatic shift occurred in the

northern and tropical Pacific Ocean (e.g., Mantua et al.

1997; Cobb et al. 2001). This so-called Pacific regime shift

had important socio-economic impacts, particularly for the

fishing industry (Mantua et al. 1997). Previous analysis of

the stable oxygen isotope and Sr/Ca time series of core

GIM has shown that in the same time interval, tropical

Indian Ocean SSTs reached a critical threshold beyond

which small SST anomalies may have a significant impact

on atmospheric convection and rainfall variability (Timm

et al. 2005; Pfeiffer et al. 2006). However, recent studies

have indicated significant problems regarding the fidelity

of coral Sr/Ca ratios as recorders of decadal to interdecadal

temperature changes (e.g., Linsley et al. 2006). Here, we

compare the magnitude of the temperature changes inferred

from the Sr/Ca time series of the Peros Banhos corals

associated with the regime shift in the tropical Indian

Ocean during the mid-1970s.

Composite Sr/Ca indicates a pronounced shift towards

warmer temperatures in the mid-1970s (Fig. 4), while the

ERSST data from the grid including Peros Banhos shows a

uniform, linear warming trend since 1950, and a compa-

rably small temperature shift in the mid-1970s. Composite

Sr/Ca and ERSST show large deviations in the 1970s and

early 1980s, when air temperature data is lacking. In this

time period, the temperature residual clearly exceeds the

±1r level (Fig. 4b). The origin of these differences could

be either climatic or poor data. In the 2� 9 2� grid

including Peros Banhos, the average number of observa-

tions in COADS decreases by more than a factor of two
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prior to 1980, from 7.7 (1980–1992) to 3.6 observations per

month (1970–1979). A similar decrease in the number of

observations is found in nearby grids.

We have estimated the magnitude of the temperature

shift in the mid-1970s by subtracting the mean temperatures

of 1950–1975 from the mean temperatures of 1995–1975

(Fig. 6). Again, coral Sr/Ca is converted to temperature by

assuming that -0.06 mmol/mol corresponds to a warming

of 1�C. However, we have also used slope values of -0.04

and -0.08 mmol/(mol �C) in order to obtain error estimates

for the coral Sr/Ca–temperatures. These slope values

broadly cover the observed spread of the Sr/Ca–temperature

relationship (e.g., Marshall and McCulloch 2002; Swart

et al. 2002). We note that due to these uncertainties, the

absolute error of changes in mean temperature inferred from

coral Sr/Ca increases with increasing changes in mean Sr/

Ca (the relative error remains constant: 0.06/0.02 = 33%)

(Fig. 6).

Of all Sr/Ca time series, core GIM shows the smallest

increase in mean temperatures (0.26�C), and is within error

of the ERSST data. PIE, COI-5 and composite Sr/Ca all

suggest a larger temperature increase, but the magnitude of

the inferred warming is consistent with the increase in

mean air temperatures recorded at Diego Garcia. Thus, we

are facing a dilemma: we cannot reject either of the two

temperature records, or any of the three Sr/Ca series, as

erroneous. One out of three coral Sr/Ca series shows better

agreement with ERSST, while two show better agreement

with measured air temperatures (as a consequence, the

composite Sr/Ca record is also expected to agree better

with air temperature). Based on coral Sr/Ca, the sea surface

temperature shift in the mid-1970s could range anywhere

between 0.25 and 0.75 C.

We believe the a likely cause for these discrepancies are

differences in the intrinsic variance at the coral sites, as

core GIM derives from a channel where currents are strong,

while COI-5 and PIE are from shallow water settings

within the lagoon of Peros Banhos (Fig. 1b). We would

actually expect small-scale, local differences in tempera-

ture variability in shallow-water reef environments.

Lacking in situ temperature data from the three coral sites,

these conclusions remain speculative, and underline the

need for long-term monitoring studies spanning several

decades rather than years. Nevertheless, the three Sr/Ca

records from Peros Banhos provide clear evidence of a

major climatic shift in the equatorial Indian Ocean that

coincides with the regime shift in the tropical and northern

Pacific Ocean (despite large uncertainties regarding the

magnitude of the actual temperature change).

Correlation with large-scale climate indices

The El Niño–southern oscillation

On interannual time scales, ENSO is the most important

driver of anomalous SST variations in the Indo-Pacific

sector (e.g., Latif et al. 1999; Reason 2000). However, in

the Indian Ocean the magnitude of ENSO-induced SST

anomalies is small compared to the seasonal cycle of SST.

El Niño typically leads to a warming of 0.5–1�C (Reason

2000). Moreover, the impact of ENSO on Indian Ocean

SSTs varies seasonally and is strongest in boreal winter

(December to February), but weaker during other times of

the year (e.g., Webster and Yang 1992). The seasonality of

the ENSO teleconnection should further complicate the

detection of ENSO in the Sr/Ca time series from Peros

Banhos: the seasonal-scale age-model error is 1–2 month in

any year, increasing the noisiness of seasonal proxy time

series compared to instrumental data. Hence, it is often

difficult to get a clear ENSO signature from single-core

proxy records from the tropical Indian Ocean (Pfeiffer and

Dullo 2006). A composite Sr/Ca record should provide a

much better record of past ENSO variability in the Indian

Ocean.

Figure 7 displays mean December to February time series

calculated from the ERSST data in the grid including Peros

Banhos and composite Sr/Ca along with three major indices

of ENSO variability: Nino 3.4, the southern oscillation index

(SOI) and Palmyra coral d18O. The Nino 3.4 Index is a SST

anomaly index averaged over 5�N–5�S, 120�–170�W (we

use the ERSST data set), and provides a measure of ENSO-

related SST anomalies in the equatorial Pacific (e.g., Tren-

berth 1997). The SOI is the standardized atmospheric

pressure difference between Darwin and Tahiti and captures
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the atmospheric component of ENSO (the index is available

at the web page of the National Centers for Environmental

Prediction, NCEP, using the URL: ftp://ftp.ncep.noaa.gov/

pub/cpc/wd52dg/data/indices/soi.his). Palmyra d18O is a

coral proxy reconstruction from the ‘‘centre of action’’ of

ENSO-induced SST and rainfall anomalies in the equatorial

Pacific (Cobb et al. 2001). A summary of correlation coef-

ficients between all time series is given in Table 3. The

composite Sr/Ca record clearly captures ENSO-related SST

variations in the tropical Indian Ocean (Fig. 7), although the

correlation coefficients are slightly lower when compared to

the ERSST data from Peros Banhos (this should be expected

due to the greater noisiness of the proxy data). More

importantly, the ENSO teleconnection can be traced using

coral proxy time series alone: the correlation between

composite Sr/Ca from Chagos and Palmyra d18O is high and

statistically significant (r = 0.52, P\0.001). Thus, it should

be possible to use coral-based SST reconstructions alone to

investigate the impact of ENSO in the tropical Indian Ocean

during pre-instrumental times. Also, we note that composite

Sr/Ca from Peros Banhos shows a large and distinct negative

anomaly during the strong El Niño event of 1982/83, while

this event is not as clearly recorded in Palmyra d18O (Fig. 7).

This suggests that composite Indian Ocean Sr/Ca records

may actually contribute to proxy-based reconstructions of

ENSO.

The Pacific Decadal Oscillation (PDO) and mean tropical

temperatures

The most important mode of low-frequency, interdecadal

climate variability in the Indo-Pacific Ocean is the so-

called PDO, a recurring pattern of ocean–atmosphere cli-

mate variability centred over the midlatitude North Pacific

basin (Mantua et al. 1997). In a later study, Deser et al.

(2004) found clear linkages between tropical climate and

interdecadal fluctuations over the North Pacific, supporting

the notion that the tropics play a key role in North Pacific

interdecadal variability. In particular, SST anomalies in the

tropical Indian Ocean were found to exhibit prominent

interdecadal fluctuations coherent with those over the

North Pacific (Deser et al. 2004).

Evans et al. (2001) found evidence for Pacific decadal

variability in a coral Sr/Ca record from the South Pacific

(Rarotonga). However, subsequent replication studies

revealed large uncertainties regarding decadal and inter-

decadal temperature variations inferred from Sr/Ca ratios

measured in corals from Rarotonga (Linsley et al. 2006).

Here, we evaluate the fidelity of the composite Sr/Ca

record from Peros Banhos Atoll as a recorder of Pacific

decadal variability in the tropical Indian Ocean.

Figure 8 compares annual mean time series of the ERSST

data from the grid including Peros Banhos, composite Sr/Ca,

the PDO index (Mantua et al. 1997), and a growth index

derived from long-lived geoduck clams from the eastern

North Pacific (122�W, 48�N), which provides an annually

resolved proxy of SST in one of the ‘‘centres of action’’ of

the PDO (Strom et al. 2004). Mean tropical surface tem-

peratures averaged over 30�N–30�S, 0�–360�E are also

shown for comparison (data from HadCRUT3; Brohan et al.

2006). A summary of correlation coefficients between all

time series is given in Table 3. As expected based on the

analysis of historical data (e.g., Deser et al. 2004), our

composite Sr/Ca record clearly captures the most recent

regime shift of the PDO that occurred in the mid-1970s

(Fig. 8). The correlation between composite Sr/Ca and the

PDO further confirms that Sr/Ca is an accurate recorder of

climate variability on decadal to interdecadal timescales.

Moreover, we find that the linkage between interdecadal

SST variations in the tropical Indian Ocean and the North

Pacific can be captured using proxy records from biogenic

archives alone: the correlation between composite Sr/Ca

from Chagos and the geoduck clam growth index is high and

statistically significant (r = 0.50, P\0.001) (Table 4). This

finding demonstrates that different climatic archives and

proxies can be used to investigate large-scale climatic tele-

connections, provided that they have comparable temporal

resolution and accurate chronological control.

The spatial correlation patterns of the PDO index and

annual mean composite Sr/Ca from Chagos are compared

Table 3 Summary of correlations between mean December–February ERSST from the grid including Peros Banhos, composite Sr/Ca and

various ENSO indices

ERSST

(70�E/6�S)

Composite Sr/Ca Nino 3.4 SOI Palmyra d18O

ERSST (70�E/6�S) 9

Composite Sr/Ca -0.63 9

Nino 3.4 0.64 -0.54 9

SOI -0.64 0.56 0.88 9

Palmyra d18O -0.67 0.52 -0.66 0.59 9

Nino 3.4 is taken from ERSST, version 2. The SOI index is provided by NCEP. The Palmyra d18O data is from Cobb et al. (2001). For all

correlations P \ 0.001
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in Fig. 9 (note that the correlations of composite Sr/Ca are

opposite in sign due to the inverse Sr/Ca–temperature

relationship). The correlation patterns are broadly similar,

with high correlations throughout much of the Indian and

equatorial Pacific Oceans, and a dipole pattern in the North

Pacific with opposite values in the east and the centre.

However, some differences in spatial emphasis exist. In

particular, a stronger weighting of the tropical Indian

Ocean relative to the equatorial and northern Pacific Ocean

is apparent. Figure 9 c shows the spatial correlation

patterns of annual mean tropical surface temperatures

(Fig. 8d) for comparison. The correlation patterns are

remarkably similar to the patterns obtained with our com-

posite Sr/Ca record from Peros Banhos (compare Fig. 9b,

c), with a coherent positive correlation in the entire tropical

Indian Ocean. Hence, the strong correlation between

composite Sr/Ca from Peros Banhos and tropical mean

temperatures is not surprising (Table 4). We conclude that

century-long coral Sr/Ca records from the tropical Indian

Ocean will not only help to investigate large-scale climatic

teleconnections in the Indo-Pacific Ocean, but also provide

invaluable data for reconstructions of tropical mean tem-

peratures from corals (e.g., Wilson et al. 2006).

Summary and conclusions

We have generated three monthly resolved Sr/Ca records,

each covering the time period of 1950–1995, from Peros

Banhos (Chagos Archipelago), an atoll situated in the

geographical centre of the Indian Ocean. Analysis of these

proxy time series led us to the following conclusions:

(1) The intrinsic variability of single-core Sr/Ca time

series differs from core to core. While it is not clear

whether this is due to biological effects or local

climatic factors, this limits the use of single-core

reconstructions for quantitative estimates of sea

surface temperature variations.

(2) Despite their uncertainties, all single-core Sr/Ca time

series are significantly correlated with each other and
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Fig. 8 Mean annual time series of a ERSST (70�E, 6�S), b composite

Sr/Ca, c the Pacific Decadal Oscillation (PDO, Mantua et al. 1997),

d a geoduck clam (Panopea abrupta) growth index from the north-

eastern Pacific (Strom et al. 2004), e mean tropical temperatures

averaged over 30�N–30�S (data from HadCRUT3, Brohan et al.

2006). All time series are normalized by subtracting the mean and

dividing by their standard deviation. The y-axis of the composite

Sr/Ca series is reversed to facilitate comparison
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Fig. 7 Mean December–February time series of a ERSST (70�E,

6�S), b composite Sr/Ca, c Nino 3.4 SST anomalies, d the southern

oscillation index (SOI), e Palmyra coral d18O (from Cobb et al. 2001).

All time series are normalized by subtracting the mean and dividing

by their standard deviation. The y-axis of the SOI, composite Sr/Ca

and Palmyra d18O are reversed to facilitate comparison
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with instrumental temperature data. Coral Sr/Ca

generally correlates better with air temperature mea-

sured at Diego Garcia, situated almost 2� south of

Peros Banhos, than with grid-SST reconstructed from

sparse historical data. The observed spread of

estimated Sr/Ca–temperature relationships reflects

the differences in the intrinsic variance of the

single-core Sr/Ca time series, as well as the instru-

mental temperature data. We speculate that this may

also partly explain the large spread of Sr/Ca–temper-

ature relationships estimated from corals, as most

Sr/Ca time series are not calibrated with in situ

temperature data.

(3) Averaging the single-core data to a composite Sr/Ca

record improves the correlation with instrumental

temperature and allows the reconstruction of relative

temperature variations with considerable accuracy.

This shows that despite possible biological influences,

thermodynamics exert a strong control on skeletal

Sr/Ca ratios in corals.

(4) All three single-core Sr/Ca time series indicate a shift

towards warmer temperatures in the mid-1970s. COI-

5 and PIE suggest a warming of 0.65 and 0.75�C,

respectively. This is within error of the warming

indicated by the air temperature data from Diego

Garcia. GIM shows a warming of only *0.26�C, and

is consistent with grid-SST. Our results indicate that

the magnitude of interdecadal temperature changes

inferred from single-core Sr/Ca time series may differ

by a factor [2.5.

(5) Coral Sr/Ca measured in the Chagos corals is a robust

recorder of large-scale climatic signals in the Indo-

Pacific. Interannual SST variations are clearly related

to ENSO, while the shift towards warmer tempera-

tures in the mid-1970s coincides with the most recent

shift of the PDO. These large-scale climatic telecon-

nections can also be captured using suitable proxy

records from the Pacific Ocean.

Table 4 Summary of correlations between annual mean ERSST from the grid including Peros Banhos, composite Sr/Ca, and various climate

indices

ERSST

(70�E/6�S)

Composite Sr/Ca PDO Geoduck clam Mean tropical T

ERSST (70�E/6�S) 9

Composite Sr/Ca -0.70 9

PDO 0.56 -0.56 9

Geoduck clam 0.39* -0.50 0.45* 9

Mean tropical T 0.85 -0.70 0.68 0.44* 9

The PDO index is provided by Mantua et al. (1997). The Geoduck Clam data are from Strom et al. (2004). Mean tropical temperatures are taken

from HadCRUT3 (Brohan et al. 2006), averaged over 30�S–30�N. For all correlations P \ 0.001 (*P \ 0.01). See text for discussion
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Fig. 9 a Spatial correlations of the PDO index (Mantua et al. 1997)

with global surface temperatures (HadCRUT3, Brohan et al. 2006).

b Same as Fig. 9a but for mean annual composite Sr/Ca from Chagos

(open circle) with global surface temperatures (b). Same as Fig. 9a
but for mean tropical temperatures averaged over 30�N–30�S

(HadCRUT3, Brohan et al. 2006). The location of the Geoduck clam

growth index is also indicated (rectangle). White squares indicate

missing data.
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(6) Century-long coral Sr/Ca time series from the Indian

Ocean should contribute significantly to proxy recon-

structions of tropical mean temperatures.
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