720 research outputs found
Analysis of columns with sheardeformation using finite element method and equivalent distributedloads
En este trabajo se aplica un procedimiento basado en el concepto de Acción Repartida Equivalente (ARE) al análisis, por el Método de Elementos Finitos (MEF) formulado en desplazamientos y solución nodal exacta, de pilares con deformación por cortante de acuerdo con la teoría de Timoshenko. Los resultados obtenidos con la metodología ARE-MEF, en los casos analizados, ponen de manifiesto que con un número muy reducido de elementos (uno y dos en los ejemplos desarrollados) se alcanza gran exactitud en desplazamientos, giros y esfuerzos. Sin embargo con otras metodologías formuladas en desplazamientos, como por ejemplo la de integración reducida, se requiere del orden de 40 elementos para alcanzar resultados similares. Asimismo en el presente trabajo, a partir del MEF con solución nodal exacta se determinan de una forma directa y sistemática las funciones de estabilidad y la carga de pandeo para el pilar de Timoshenko.This paper describes a procedure based on the concept of Equivalent Distributed Loads (EDL) applied to the Finite Elements Method (FEM) based on displacements and exact nodal solution of columns subject to shear deformation in accordance with the Timoshenko beam theory. The results obtained using this “EDL-FEM” methodology, in the cases studied, show that a high level of exactness in displacements, rotations as well as shear force and bending moment is obtained with a very small number of elements (one or two in the examples developed). Other methodologies based on displacements, such as reduced integration, require on the order of 40 elements to achieve similar results. The stability functions and buckling load for the Timoshenko beam are also determined in a direct and systematic way from the FEM with exact nodal solution.Peer Reviewe
Constant probe orientation for fast contact-based inspection of 3D free-form surfaces using (3+2)-axis inspection machines
A new probe optimization method for contact based (3+2)-axis inspection machines is proposed. Given an inspection path of a stylus on a free-form surface, an optimal orientation of the stylus is computed such that (i) the inclination angle of the stylus is within a given angular range with respect to the surface normal, (ii) the motion of the stylus is globally collision free, and (iii) the stylus remains constant in the coordinate system of the measuring machine. The last condition guarantees that the inspection motion requires only the involvement of the three translational axes of the measuring machine. The numerical simulations were validated through physical experiments on a testcase of a tooth of a bevel gear due to the surface complexity and probe accessibility. This optimized method was compared to 3-axis and 5-axis inspection strategies, showing that the fixed (3+2)-axis stylus returns more accurate inspection results compared to the traditional 3-axis approach and similar to 5-axis approach
An empirical and modelling approach to the evaluation of cruise ships' influence on air quality: The case of La Paz, Mexico
Maritime activity has diverse environmental consequences impacts in port areas, especially for air quality, and the post-COVID-19 cruise tourism market's potential to recover and grow is causing new environmental concerns in expanding port cities. This research proposes an empirical and modelling approach for the evaluation of cruise ships' influence on air quality concerning NO2 and SO2 in the city of La Paz (Mexico) using indirect measurements. EPA emission factors and the AERMOD modelling system coupled to WRF were used to model dispersions, while street-level mobile monitoring data of air quality from two days of 2018 were used and processed using a radial base function interpolator. The local differential Moran's Index was estimated at the intersection level using both datasets and a co-location clustering analysis was performed to address spatial constancy and to identify the pollution levels. The modelled results showed that cruise ships' impact on air quality had maximum values of 13.66 µg/m3 for NO2 and 15.71 µg/m3 for SO2, while background concentrations of 8.80 for NOx and 0.05 for SOx (µg/m3) were found by analysing the LISA index values for intersections not influenced by port pollution. This paper brings insights to the use of hybrid methodologies as an approach to studying the influence of multiple-source pollutants on air quality in contexts totally devoid of environmental data.Peer ReviewedPostprint (published version
Elementos finitos con acciones repartidas equivalentes de cualquier orden. Aplicación a los modelos de vigas de Timoshenko y Bernoulli-Euler
In the context of the Finite Element Method, two possible alternatives dealing with the concept of equivalent distributed load are presented in the paper. The first consist in using few finite elements, by slightly increasing the order of the load, while the second applies the use of a greater number of elements leaving the load in the lowest possible order. Both situations are sampled with application to the Timoshenko and Bernoulli-Euler beam models, with different orders of load are used. These equivalent distributed loads are the result of applying Legendre orthogonal polynomial approximations, to the original load, in each element. The most noteworthy conclusion is that when the least possible number of finite elements is used (i.e., one) also for considering low level of regularity load cases only equivalent distributed loads of slightly higher than minimum order (four) were needed to obtain an excellent approximation when computing the deflections, rotations, bending moments and shear forces inside the elements.En este trabajo se introducen, en el contexto del Método de Elementos Finitos, dos alternativas posibles en relación con el concepto de acción repartida equivalente. La primera consiste en emplear pocos elementos, elevando el orden de dicha acción, mientras que la segunda se basa en emplear un mayor número de elementos dejando la acción en el orden más bajo posible. Se ilustran ambas situaciones mediante aplicaciones a los modelos de vigas de Timoshenko y Bernoulli-Euler, empleando estas acciones con diferentes órdenes, las cuales aproximan a la acción original, mediante polinomios ortogonales de Legendre en cada elemento. Como conclusión destacable, se indica que cuando se considera el menor número posible de elementos, es decir uno, para los casos de carga poco regular, ha bastado con utilizar acciones repartidas equivalentes de orden ligeramente superior al mínimo (orden cuatro), para obtener una excelente aproximación en los desplazamientos, giros y esfuerzos en el interior de los elementos
Fault‑tolerant quantum algorithm for dual‑threshold image segmentation
The intrinsic high parallelism and entanglement characteristics of quantum computing have made quantum image processing techniques a focus of great interest. One of the most widely used techniques in image processing is segmentation, which in one of their most basic forms can be carried out using thresholding algorithms. In this paper, a fault-tolerant quantum dual-threshold algorithm has been proposed. This algorithm has been built using only Clifford+T gates for compatibility with error detection and correction codes. Because fault-tolerant implementation of T gates has a much higher cost than other quantum gates, our focus has been on reducing the number of these gates. This has allowed adding noise tolerance, computational cost reduction, and fault tolerance to the state-of-the-art dual-threshold segmentation circuits. Since the dual-threshold image segmentation involves the comparison operation, as part of this work we have implemented two full comparator circuits. These circuits optimize the metrics T-count and T-depth with respect to the best circuit comparators currently available in the literature
AGRONOMIC EVALUATION AND CHEMICAL COMPOSITION OF AFRICAN STAR GRASS (Cynodon plectostachyus) IN THE SOUTHERN REGION OF THE STATE OF MEXICO
African Star Grass is one of the forage resources most commonly used by farmers in regions with warm-humid climates. This study was carried out to determine the nutritional and agronomic characteristics of African Star Grass (Cynodon plectostachyus) through the following variables: crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), organic matter digestibility (OMD), net forage accumulation (NFA), stem:leaf ratio, and live:dead matter ratio in the three pastures evaluated. The work took place from April 2007 to March 2008, with evaluations carried out on a monthly basis. The data were analyzed in a randomized block design in which the blocks were the pastures, and the treatments were the months of evaluation. There were no differences between the pastures evaluated for the NDF, ADF or OMD (P>0.05). Differences were found, however, in CP, while in the monthly evaluation, differences were found between the periods evaluated (P<0.05) for these variables. Differences were also found in the agronomic evaluation of pastures (P<0.05) among height of pasture, net forage accumulation (NFA), live matter, dead matter, leaf and stem, both among pastures and in the monthly evaluations. African Star Grass can therefore be considered a good choice for milk production systems in the southern region of the state of Mexico, due to its nutritional and agronomic characteristics
Synthesis of compositionally graded nanocast NiO/NiCo2O4/Co3O4 mesoporous composites with tuneable magnetic properties
A series of mesoporous NiO/NiCo2O4/Co3O4 composites has been synthesized by nanocasting using SBA-15 silica as a hard template. The evaporation method was used as the impregnation step. Nickel and cobalt nitrates in different Ni(II) : Co(II) molar ratios were dissolved in ethanol and used as precursors. The composites show variable degrees of order, from randomly organized nanorods to highly ordered hexagonally-packed nanowires as the Ni(II) : Co(II) molar ratio decreases. The materials exhibit moderately large surface areas in the 60-80 m2 g−1 range. Their magnetic properties, saturation magnetization (MS) and coercivity (HC), can be easily tuned given the ferrimagnetic (NiCo2O4) and antiferromagnetic (NiO and Co3O4) character of the constituents. Moreover, the NiCo2O4 rich materials are magnetic at room temperature and consequently can be easily manipulated by small magnets. Owing to their appealing combination of properties, the nanocomposites are expected to be attractive for myriad applications
Fault diagnosis in industrial process by using LSTM and an elastic net
[EN] Fault diagnosis is important for industrial processes because it permits to determine the necessity of emergency stops in a process and/or to propose a maintenance plan. Two strategies for fault diagnosis are compared in this work. On the one hand, the data are preprocessed using the independent components analysis for dimension reduction, then the wavelet transform is used in order to highlight the faulty signals, with this information an artificial neural network was fed. On the other hand, the second strategy, the main contribution of this work, is the implementation of a long short term memory. This memory is fed with the most representative variables selected by an elastic net to use both, the L1 and L2 norms. These strategies are applied in the Tennessee Eastman process, a benchmark widely used for fault diagnosis. The fault isolation had better results than those reported in the literature.[ES] El diagnóstico de fallas es importante en los procesos industriales, ya que permite determinar si es necesario detener el proceso en operación y/o proponer un plan de mantenimiento. En el presente trabajo se comparan dos estrategias para diagnosticar fallas. La primera realiza un preprocesamiento de datos usando el análisis de componentes independientes para reducir la dimensión de los datos, posteriormente, se emplea la transformada wavelet para resaltar las señales de falla, con esta información se alimenta una red neuronal artificial. Por su parte, la segunda estrategia, principal contribución de este trabajo, usa una memoria de corto y largo plazo. Esta memoria es alimentada por las variables más significativas seleccionadas mediante una red elástica para usar tanto la norma como la . Como ejemplo de aplicación se utilizó el proceso químico Tennessee Eastman, un proceso ampliamente usado en el diagnóstico de fallas. El aislamiento de fallas mostró mejores resultados con respecto a los reportados en la literatura.Márquez-Vera, MA.; López-Ortega, O.; Ramos-Velasco, LE.; Ortega-Mendoza, RM.; Fernández-Neri, BJ.; Zúñiga-Peña, NS. (2021). Diagnóstico de fallas mediante una LSTM y una red elástica. Revista Iberoamericana de Automática e Informática industrial. 18(2):164-175. https://doi.org/10.4995/riai.2020.13611OJS164175182Adewole, A., Tzoneva, R., Behardien, S., 2016. Distribution network fault section identification and fault location using wavelet entropy and neural networks. Applied Soft Computing 46, 296-306. https://doi.org/10.1016/j.asoc.2016.05.013Alkaya, A., Eker, I., 2011. Variance sensitive adaptive threshold-based PCA method for fault detection with experimental application. ISA Transactions 50, 287-302. https://doi.org/10.1016/j.isatra.2010.12.004Barakat, S., Eteiba, M., Wahba, W., 2014. Fault location in underground cables using anfis nets and discrete wavelet transform. Journal of Electrical Systems and Information Technology 1, 198-211. https://doi.org/10.1016/j.jesit.2014.12.003Bathelt, A., Ricker, N., Jelali, M., 2015. Revision of the Tennessee Eastman process model. IFAC Papers-Online 48 (8), 309-314. https://doi.org/10.1016/j.ifacol.2015.08.199Boldt, F., Rauber, T., Varejao, F., October 2014. Evaluation of the extreme learning machine for automatic fault diagnosis of the Tennessee Eastman chemical process. In: IEEE (Ed.), Annual Conference of the IEEE Industrial Electronics Society. Vol. 40. Dallas, Texas, pp. 2551-2557. https://doi.org/10.1109/IECON.2014.7048865Chen, H., Tino, P., Yao, X., 2014. Cognitive fault diagnosis in Tennessee Eastman process using learning in the model space. Computers and Chemical Engineering 67, 33-42. https://doi.org/10.1016/j.compchemeng.2014.03.015Rodrigues, J., Filho, P., PeixotoJr., E., Kumar, A., deAlbuquerque, V., 2019. Classification of EEG signals to detect alcoholism using machine learning techniques. Pattern Recognition Letters 125, 140-149. https://doi.org/10.1016/j.patrec.2019.04.019Dixit, A., Majumdar, S., 2013. Comparative analysis of coiflet and daubechies wavelets using global threshold for image denoising. Intenational Journal of Advances in Engineering & Technology 6 (5), 2247-2252.Downs, J., Vogel, E., 1993. A plant-wide industrial process control problem. Computers and Chemical Engineering 17 (3), 245-255. https://doi.org/10.1016/0098-1354(93)80018-IFischer, T., Krauss, C., 2018. Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research 270, 654-669. https://doi.org/10.1016/j.ejor.2017.11.054Gao, X., Hou, J., 2016. An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process. Neurocomputing 174, 906-911. https://doi.org/10.1016/j.neucom.2015.10.018Geng, Z., Li, Z., Han, Y., 2018. A new deep belief network based on RBM with glial chains. Information Sciences 463, 294-306. https://doi.org/10.1016/j.ins.2018.06.043Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press, United States of America, http://www.deeplearningbook.ogr.Han, L., Li, C., Guo, S., Su, X., 2015. Feature extraction method of bearing AE signal based on improved Fast-ICA and wavelet packet energy. Mechanical Systems and Signal Processing 62-63, 91-99. https://doi.org/10.1016/j.ymssp.2015.03.009Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data mining, inference and prediction. Springer, New York. https://doi.org/10.1007/978-0-387-84858-7Hoang, D., Kang, H., 2019. A survey on deep learning based bearing fault diagnosis. Neurocomputing 335, 327-335. ttps://doi.org/10.1016/j.neucom.2018.06.078Hochreiter, S., Schmidhuber, J., 1997. Long short term memory. Neural Computation 9 (8), 1735-1780. ttps://doi.org/10.1162/neco.1997.9.8.1735Hyvärinen, A., Oja, E., 2000. Independent component analysis: Algorithms and applications. Neural Networks 13, 411-430. ttps://doi.org/10.1016/S0893-6080(00)00026-5Jing, C., Gao, X., Zhu, X., Lang, S., July 2014. Fault classificaction on Tennessee Eastman process: PCA and SVM. In: IEEE (Ed.), Intenational Conference on Mecatronics and Control. Jinzhou, China, pp. 2194-2197. https://doi.org/10.1109/ICMC.2014.7231958Jung, C., Kim, K., Lee, J., Klockl, B., 2007. Wavelet and neuro-fuzzy based fault location for combined transmission systems. Energy Systems 29, 445-454. https://doi.org/10.1016/j.ijepes.2006.11.003Kandula, V. K., 2011. Fault detection in process control plants using principal component analysis. Master's thesis, Louisiana State University, Department of Electrical Engineering.Karpenko, M., Sepehri, N., Octubre 2001. A neural network based fault detection and identification scheme for pneumatic process control valves. In: IEEE (Ed.), International Conference on Systems, Man and Cybernetics. Tucson, USA, pp. 93-98. https://doi.org/10.1109/ICSMC.2001.969794Khakipour, M., Safavi, A., Setoodeh, P., 2017. Bearing fault diagnosis with morphological gradient wavelet. Journal of the Franklin Institute 354, 2465-2476. https://doi.org/10.1016/j.jfranklin.2016.11.013Kuang, T., Yang, Z., Yao, Y., 2015. Multivariate fault isolation via variable selection in discriminant analysis. Journal of Process Control 35, 30-40. https://doi.org/10.1016/j.isatra.2017.06.014Kumar, R., Bansal, H., 2019. Hardware in the loop implementation of wavelet based strategy in shuntactive powerfilter to mitigate power quality issues. Electric Power Systems Research 169, 92-104. https://doi.org/10.1016/j.epsr.2019.01.001Lau, C., Ghosh, K., Hussain, M., Hassan, C. C., 2013. Fault disgnosis of Tennessee Eastman process with multi-scale PCA and ANFIS. Chemom. Intell. Lab. Syst. 120, 1-14. https://doi.org/10.1016/j.chemolab.2012.10.005Lee, J., Yoo, C., Lee, I., 2004. Statistical process monitoring with independent component analysis. Journal of Process Control 14 (5), 467-485. https://doi.org/10.1016/j.jprocont.2003.09.004Lei, J., Liu, C., Jiang, D., 2019. Fault diagnosis of wind turbine based on long short-term memory networks. Renewable Energy 133, 422-432. https://doi.org/10.1016/j.renene.2018.10.031Li, W., Monti, A., Ponci, F., 2014. Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks. IEEE Transactions on Instrumentation and Measurement 63 (11), 2651-2665. https://doi.org/10.1109/TIM.2014.2313035Liang, P., Deng, C.,Wu, J., Yang, Z., Zhu, J., Zhang, Z., 2019. Compound fault diagnosis of gearboxes via multi-label convolutional neural network and wavelet transform. Computers in Industry 113, 103132. https://doi.org/10.1016/j.compind.2019.103132Lin, J., Zhang, A., 2005. Fault feature separation using wavelet-ICA filter. NDT&E International 38, 421-427. https://doi.org/10.1016/j.ndteint.2004.11.005Linker, R., Gutman, P., Seginer, I., 2002. Observer-based robust failure detection and isolation in greenhouses. Control Engineering Practice 10 (5), 519- 531. https://doi.org/10.1016/S0967-0661(02)00002-3Lou, W., Loparo, K., 2004. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mechanical Systems and Signal Processing 18, 1077-1095. https://doi.org/10.1016/S0888-3270(03)00077-3Lv, F.,Wen, C., Bao, Z., Liu, M., 2016. Fault diagnosis based on deep learning. In: AACC (Ed.), American Control Conference. Boston, USA, pp. 6851-6856. https://doi.org/10.1109/ACC.2016.7526751Lv, F., Wen, C., Liu, M., Bao, Z., 2017. Weighted time series fault diagnosis based on a staked sparce autoencoder. Journal of Chemometrics 31, 16 pages. https://doi.org/10.1002/cem.2912Lv, F., Fan, X., Wen, C., Bao, Z., 2018. Stacked sparse auto encoder network based multimode process monitoring. In: IEEE (Ed.), International Conference on Control Automation & Information Science. Hangzhou, China, pp. 227-232. https://doi.org/10.1109/ICCAIS.2018.8570618Maglaveras, N., Stamkopoulos, T., Diamantaras, K., Pappas, C., Strintzis, M., 1998. ECG pattern recognition and classification using non-linear transfor mations and neural networks: A review. International Journal of Medical Informatics 52, 191-208. https://doi.org/10.1016/S1386-5056(98)00138-5Methnani, S., Lafont, F., Gautier, J., Damak, T., Toumi, A., 2013. Actuator and sensor fault detection, isolation and identification in nonlinear dynamical systems, with applications to a waste water treatment plant. Journal of Computer Engineering and Informatics 1 (4), 112-125. https://doi.org/10.1080/21642583.2014.888525Muñoz-Cobo, J., Mendizábal, R., Miquel, A., Berna, C., Escrivá, A., 2017. Use of the principles of maximum entropy and maximum relative entropy for the determination of uncertain parameter distributions in engineering applications. Entropy 19, 486, 37 pages. https://doi.org/10.3390/e19090486Nguyen, B., Quyen, A., Nguyen, P., Ton, T., July 2017. Wavelet-based neural network for recognition of faults at nhabe power substation of the vietnam power system. In: IEEE (Ed.), International Conference on System Science and Engineering. Ho Chi Minh City, Vietnam, pp. 165-168. https://doi.org/10.1109/ICSSE.2017.8030858Ojeda-González, A., Mendes-Jr., O., Oliveira-Domingues, M., Menconi, V., 2014. Daubechies wavelet coeffcients: a tool to study interplanetary magnetic field fluctuations. Geof'ısica Internacional 53 (2), 101-115. https://doi.org/10.1016/S0016-7169(14)71494-1Oliveira, J., Pontes, K., Santori, I., Embirucu, M., 2017. Fault detection and diagnosis in dynamic systems using weightless neural networks. Expert Systems With Applications 84, 200-219. https://doi.org/10.1016/j.eswa.2017.05.020Patan, K., 2008. Artificial neural networks for the modelling and fault diagnosis of technical process. Lecture Notes in Control and Information Sciences. Springer, India.Rafiee, J., Rafiee, M., Tse, P., 2010. Application of mother wavelet functions for automatic gear and bearing fault diagnosis. Expert Systems with Applications 37, 4568-4579. https://doi.org/10.1016/j.eswa.2009.12.051Ramos-Velasco, L., Ramos-Fernández, J., Islar-Gómez, O., Espejel-Rivera, M., García-Lamont, J., Márquez-Vera, M., 2013. Identificación y control wavenet de un motor de ca. Revista Iberoamericana de Automática e Informática Industrial 10, 269-278. https://doi.org/10.1016/j.riai.2013.05.002Rato, T., Reis, M., 2013. Defining the structure of DPCA models and its impact on process monitoring and prediction ctivities. Chemometrics and Intelligent Laboratory Systems 125, 74-86. https://doi.org/10.1016/j.chemolab.2013.03.009Rockinger, M., Jondeau, E., 2002. Entropy densities with an application to autoregressive conditional skewness and kurtosis. Journal of Econometrics 106, 119-142. https://doi.org/10.1016/S0304-4076(01)00092-6Salahschoor, K., Kiasi, F., July 2008. On-line process monitoring based on wavelet-ICA methodology. In: IFAC (Ed.), Proceedings of the 17th World Congress. Seul- Korea, pp. 6-11. https://doi.org/10.3182/20080706-5-KR-1001.01253Salahshoor, K., Khoshro, M., Kordestani, M., 2011. Fault detection and diagnosis of an industrial steam turbine using a distributed configuration of adaptive neuro-fuzzy inference systems. Simulation Modelling Practice and Theory 19, 1280-1293. https://doi.org/10.1016/j.simpat.2011.01.005Sharif, I., Khare, S., 2014. Comparative analysis of Haar and Daubechies wavelet for hyper spectral image classification. In: Commission, I. T. (Ed.), VIII Symposium of The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science. Hyderabad-India, pp. 937-941. https://doi.org/10.5194/isprsarchives-XL-8-937-2014Smirnov, E., Timoshenko, D., Adrianov, S., 2014. Comparison of regularization methods for imagenet classification with deep convolutional neural networks. AASRI Procedia 6, 89-94. https://doi.org/10.1016/j.aasri.2014.05.013Sobhani-Tehrani, E., Khorasani, K., 2009. Fault diagnosis of nonlinear systems using a hybrid approach. Fault detetion and diagnosis. Springer, Berlin, Ch. 2, pp. 22-49. https://doi.org/10.1007/978-0-387-92907-1_2Tayarani-Bathaie, S., Vanini, Z., Khorasani, K., 2014. Dynamic neural networkbased fault diagnosis of gas turbine engines. Neurocomputing 125, 153-165. https://doi.org/10.1016/j.neucom.2012.06.050Zvokelj, M., Zupan, S., Prebil, I., 2016. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis. Journal of Sound and Vibration 26, 394-423. https://doi.org/10.1016/j.jsv.2016.01.046Wang, X., Qin, Y., Wang, Y., Xiang, S., Chen, H., 2019. ReLTanh: An activation function with vanishing gradient resistance for SAE-based DNNs and its application to rotating machinery fault diagnosis. Neurocomputing 363, 88-98. https://doi.org/10.1016/j.neucom.2019.07.017Wu, F., Tong, F., Yang, Z., 2016. EMGdi signal enhancement based on ICA decomposition and wavelet transform. Applied Soft Computing 43, 561-571. https://doi.org/10.1016/j.asoc.2016.03.002Wu, J., Hsu, C., Wu, G., 2009. Fault gear identification and classification using discrete wavelet transform and adaptive neuro-fuzzy inference. Expert Systems with Applications 36, 6244-6255. https://doi.org/10.1016/j.eswa.2008.07.023Wu, Q., Law, R., Wu, S., 2011. Fault diagnosis of car assembly line based on fuzzy wavelet kernel support vector classifier machine and modified genetic algorithm. Expert Systems with Applications 38, 9096-9104. https://doi.org/10.1016/j.eswa.2010.12.109Wu, H., Zhao., Jinsong, 2018. Deep convolutional neural network model based chemical process fault diagnosis. Computers and Chemical Engineering 115, 185-197. https://doi.org/10.1016/j.compchemeng.2018.04.009Xiao, C., Chen, N., Hu, C., Wang, K., Gong, J., Chen, Z., 2019. Short and midterm sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sensing of Environment 233, 111358. https://doi.org/10.1016/j.rse.2019.111358Xie, D., Bai, L., December 2015. A hierarchical deep neural network for fault diagnosis on Tennessee-Eastman process. In: IEEE (Ed.), International Conference on Machine Learning and Applications. Vol. 14. Miami, USA, pp. 745-748. https://doi.org/10.1109/ICMLA.2015.208Yan, R., Gao, R., Chen, X., 2014. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing 351, 4555-4569. https://doi.org/10.1016/j.sigpro.2013.04.015Yan, Z., Yao, Y., 2015. Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO). Chemometrics and Intelligent Laboratory Systems 146, 136-146. https://doi.org/10.1016/j.chemolab.2015.05.019Yao, G., Lei, T., Zhong, J., 2019. A review of convolutional-neural-networkbased action recognition. Pattern Recognition Letters 118, 14-22. https://doi.org/10.1016/j.patrec.2018.05.018Yin, S., Ding, S., Haghani, A., Hao, H., Zhang, P., 2012. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. Journal of Process Control 22, 1567-1581. https://doi.org/10.1016/j.jprocont.2012.06.009Zhang, Q., Yang, L., Chen, Z., Li, P., 2018. A survey on deep learning for big data. Information Fusion 42, 146-157. https://doi.org/10.1016/j.inffus.2017.10.006Zhang, X., Polycarpou, M., Parisini, T., 2002. A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems. IEEE Transactions on Automatic Control 47 (4), 576-593. https://doi.org/10.1109/9.995036Zhang, Y., Zhang, L., Zhang, H., 2012. Fault detection for industrial processes. Mathematical Problems in Engineering 2012, 18 pages. https://doi.org/10.1155/2012/757828Zhang, Z., Zhao, J., 2017. A deep belief network based fault diagnosis model for complex chemical process. Computers and Chemical Engineering 107, 395-407. https://doi.org/10.1016/j.compchemeng.2017.02.041Zhao, H., 2018. Neural component analysis for fault detection. Chemometrics and Intelligent Laboratory Systems 176, 11-21. https://doi.org/10.1016/j.chemolab.2018.02.001Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R., 2019. Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing 115, 213-237. https://doi.org/10.1016/j.ymssp.2018.05.050Zheng, J., Huang, W., Wang, Z., Liang, J., 2019. Mutual information-based sparse multiblock dissimilarity method for incipient fault detection and diagnosis in plant-wide process. Journal of Process Control 83, 63-76. https://doi.org/10.1016/j.jprocont.2019.09.00
Trends in hunters, hunting grounds and big game harvest in Spain
Aim of study: Game species are considered a scarce natural resource and therefore they are subject to economic analysis. Current studies on factors affecting big game trends have mostly emphasized the impact of ecological supply variables. This study intends to expand this analysis by considering two important supply and demand economic parameters.Area of study: We use big game hunting in Spain from 1972 until 2007 as a case study since it has an important role in the European hunting activity. Material and Methods: Different linear models were fitted to explain big game harvest as a function of two parameters not previously used: hunting grounds areas and big game firearm hunting licenses.Main results: Our main results show that up to 1989 the decrease in the area of open access territories significantly explains the increase in big game harvests, and that afterwards, once the hunting property rights were strengthen in most of the Spanish territory, the number of big game firearm licenses best explain big game harvests increments.Research highlights: This work shows an upward trend in Spanish harvests of big game, which can be attributed in part to (1) a shift to the right of big game demand, measured by an increase in big game firearm licenses, and (2) a change in the nature of big game supply (from a backward to an ordinary upward supply curve) due to the strengthening of hunting property rights of Spanish hunting grounds.Keywords: hunting license; firearm license; hunting bag; hunting sector; property rights; wildlife.</p
- …