103 research outputs found
Use of particle counter system for the optimization of sampling ,identification and decontamination procedures for biological aerosols dispersion in confined environment
Abstract
In a CBRNe (Chemical, Biological, Radiological, Nuclear and explosive) scenario, biological agents hardly allow
efficient detection/identification because of the incubation time that provides a lag in symptoms outbreak following
their dissemination. The detection of atmospheric dispersion of biological agents (i.e.: toxins, viruses, bacteria and so
on) is a key issue for the safety of people and security of environment. Another fundamental aspect is related to the
efficiency of the sampling method, which leads to the identification of the agent released, in fact an effective sampling
method is needed either to identify the contamination and to check for the decontamination procedure.
Environmental monitoring is one of the ways to improve fast detection of biological agents; for instance, particle
counters with the ability of discriminating between biological and non-biological particles are used for a first warning
when the amount of biological particles exceeds a particular threshold. Nevertheless, these systems are not able to
distinguish between pathogen and non-pathogen organisms, thus, classical “laboratory” assays are still required to
unambiguously identify the particle which triggered the warning signal. In this work, a combination of commercially
available equipment for detection and identification of the atmospheric dispersion of biological agents was evaluated in
partnership between the Italian Army, the Department of Industrial Engineering and the School of Medicine and
Surgery of the University of Rome “Tor Vergata”. The aim of this work, whose results are presented here, was to
conduce preliminary studies on the dynamics of biological aerosols fallout after its dispersion, to improve detection,
sampling and identification techniques. This will help minimizing the impact of the release of biological agents,
guarantee environmental, and people safety and securit
A large multi-country outbreak of monkeypox across 41 countries in the WHO European Region, 7 March to 23 August 2022
Following the report of a non-travel-associated cluster of monkeypox cases by the United Kingdom in May 2022, 41 countries across the WHO European Region have reported 21,098 cases and two deaths by 23 August 2022. Nowcasting suggests a plateauing in case notifications. Most cases (97%) are MSM, with atypical rash-illness presentation. Spread is mainly through close contact during sexual activities. Few cases are reported among women and children. Targeted interventions of at-risk groups are needed to stop further transmission. © 2022 European Centre for Disease Prevention and Control (ECDC). All rights reserved.The authors affiliated with the World Health Organization (WHO) are alone responsible for the views expressed in this publication and they do not necessarily represent the decisions or policies of the WHO. The co-author is a fellow of the ECDC Fellowship Programme, supported financially by the European Centre for Disease Prevention and Control (ECDC). The views and opinions expressed herein do not state or reflect those of ECDC. ECDC is not responsible for the data and information collation and analysis and cannot be held liable for conclusions or opinions drawn
Down-Regulation of Myogenin Can Reverse Terminal Muscle Cell Differentiation
Certain higher vertebrates developed the ability to reverse muscle cell differentiation (dedifferentiation) as an additional mechanism to regenerate muscle. Mammals, on the other hand, show limited ability to reverse muscle cell differentiation. Myogenic Regulatory Factors (MRFs), MyoD, myogenin, Myf5 and Myf6 are basic-helix-loop-helix (bHLH) transcription factors essential towards the regulation of myogenesis
Gene Expression Profiling of Embryonic Human Neural Stem Cells and Dopaminergic Neurons from Adult Human Substantia Nigra
Neural stem cells (NSC) with self-renewal and multipotent properties serve as an ideal cell source for transplantation to treat neurodegenerative insults such as Parkinson's disease. We used Agilent's and Illumina Whole Human Genome Oligonucleotide Microarray to compare the genomic profiles of human embryonic NSC at a single time point in culture, and a multicellular tissue from postmortem adult substantia nigra (SN) which are rich in dopaminergic (DA) neurons. We identified 13525 up-regulated genes in both cell types of which 3737 (27.6%) genes were up-regulated in the hENSC, 4116 (30.4%) genes were up-regulated in the human substantia nigra dopaminergic cells, and 5672 (41.93%) were significantly up-regulated in both cell population. Careful analysis of the data that emerged using DAVID has permitted us to distinguish several genes and pathways that are involved in dopaminergic (DA) differentiation, and to identify the crucial signaling pathways that direct the process of differentiation. The set of genes expressed more highly at hENSC is enriched in molecules known or predicted to be involved in the M phase of the mitotic cell cycle. On the other hand, the genes enriched in SN cells include a different set of functional categories, namely synaptic transmission, central nervous system development, structural constituents of the myelin sheath, the internode region of axons, myelination, cell projection, cell somata, ion transport, and the voltage-gated ion channel complex. Our results were also compared with data from various databases, and between different types of arrays, Agilent versus Illumina. This approach has allowed us to confirm the consistency of our obtained results for a large number of genes that delineate the phenotypical differences of embryonic NSCs, and SN cells
EMERGENCY PLANNING IN CASE OF CBRN EVENTS: AN INNOVATIVE METHODOLOGY TO IMPROVE THE SAFETY KNOWLEDGE OF ADVISORS AND FIRST RESPONDERS BY A MULTIDISCIPLINARY TABLE TOP EXERCISE.
ABSTRACT
Nowadays Chemical-Biological-Radiological-Nuclear (CRBN) risks are one of the main safety concern. The radiological disasters of Fukushima and Chernobyl, the chemical events of Seveso or the release of Sarin in the Tokio Subway,and the biological emergencies such as the H1N1 flue represent few examples of a dreadful evidence: : CBRNe risks are a real and global threat around us. A CBRNe event can be either of an intentional and un-intentional nature and it is important to have highly specialized advisors that can support decision makers and first responders to face this threat. The University of Rome Tor Vergata, in collaboration with the most important Italian and International Bodies that work in the field of CBRN safety and security and supported by NATO and OPCW, organized two International Master Courses in Protection against CBRN events. In this context, a Table Top Exercise (TTX) was organized, in collaboration with the Ministry of Interior and Ministry of Defence, taking into account that, in each country, the system response to CBRNe events strongly depends also on law and procedures, that enforce the advisors and first responders to rely with different skills and roles in function of the administration of origin. The organized TTX was aimed to test the level preparation of the Master students and experts working in Italy in the field of CBRN events and to test the emergency planning preparation. In particular, a radiological release was simulated in a Harbour facility in Urban Area. The students were divided in multidisciplinary groups with heterogeneous competences. Each group was supported by CBRNì experts and was stressed by the injects from a Command and Operative Centre. Responsiveness to
the injects and to the stress together with the ability to organize and manage safety and security operations, but also to interpret each role in the team according to according to national laws, were evaluated for each group. The scenario, the logistic organization, on-going adjustments during the exercise and the outcomes will be presented and analyzed by the authors in this paper.
PRELIMINARY INDEX
1. Abstract
2. Introduction
3. Table Top Exercise (TTX)
3.1 What is a TTX
3.2 How the TTX is organized
3.3 Scenario and injects
3.4 Organizational and technical solutions
4. Dat
Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.
PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study
PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73
The transcription factor p73, a member of the p53 family, mediates cell-cycle arrest and apoptosis in response to DNA damage-induced cellular stress, acting thus as a proapoptotic gene. Similar to p53, p73 activity is regulated by post-translational modification, including phosphorylation, acetylation and ubiquitylation. In C. elegans, the F-box protein FSN-1 controls germline apoptosis by regulating CEP-1, the single ancestral p53 family member. Here we report that FBXO45, the human ortholog of FSN-1, binds specifically to p73 triggering its proteasome-dependent degradation. Importantly, SCF(FBXO45) ubiquitylates p73 both in vivo and in vitro. Moreover, siRNA-mediated depletion of FBXO45 stabilizes p73 and concomitantly induces cell death in a p53-independent manner. All together, these results show that the orphan F-box protein FBXO45 regulates the stability of p73, highlighting a conserved pathway evolved from nematode to human by which the p53 members are regulated by an SCF-dependent mechanism
APPLICATION OF SPATIO-TEMPORAL EPIDEMIOLOGICAL MODELER (STEM) TO AN ANTHROPIC SMALLPOX DIFFUSION SCENARIO
The use of mathematical models to simulate the diffusion of biological agents represents an essential tool to understand the dynamics of epidemic spread. In particular, mathematical models can be applied to scenarios of deliberate release of biological warfare agents, e.g., during simulations of a terrorist attack, to evaluate their potential effects and to study possible strategies to implement effective countermeasures. In this paper, an open-source software named Spatio-Temporal Epidemiological Modeler (STEM) has been applied to a possible scenario of deliberate release of smallpox virus by an unknown terrorist group in Italy. By providing boundary conditions derived from the literature, and making conservative preliminary assumptions, it was possible to recreate a reference scenario for the voluntary diffusion of smallpox, while providing an insight into the application of user-friendly tools for the implementation of epidemiological models as a support for decision makers in the field of biosecurity
- …