17 research outputs found

    The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study

    Get PDF
    peer-reviewedHuman milk contains a diverse array of bioactives and is also a source of bacteria for the developing infant gut. The aim of this study was to characterize the bacterial communities in human milk and infant faeces over the first 3 months of life, in 10 mother-infant pairs. The presence of viable Bifidobacterium and Lactobacillus in human milk was also evaluated. MiSeq sequencing revealed a large diversity of the human milk microbiota, identifying over 207 bacterial genera in milk samples. The phyla Proteobacteria and Firmicutes and the genera Pseudomonas, Staphylococcus and Streptococcus were the predominant bacterial groups. A core of 12 genera represented 81% of the microbiota relative abundance in milk samples at week 1, 3 and 6, decreasing to 73% at week 12. Genera shared between infant faeces and human milk samples accounted for 70–88% of the total relative abundance in infant faecal samples, supporting the hypothesis of vertical transfer of bacteria from milk to the infant gut. In addition, identical strains of Bifidobacterium breve and Lactobacillus plantarum were isolated from the milk and faeces of one mother-infant pair. Vertical transfer of bacteria via breastfeeding may contribute to the initial establishment of the microbiota in the developing infant intestine

    Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.

    Get PDF
    We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities

    Early life exposure of infants to benzylpenicillin and gentamicin is associated with a persistent amplification of the gut resistome

    Get PDF
    peer-reviewedAbstract Background Infant gut microbiota is highly malleable, but the long-term longitudinal impact of antibiotic exposure in early life, together with the mode of delivery on infant gut microbiota and resistome, is not extensively studied. Methods Two hundred and eight samples from 45 infants collected from birth until 2 years of age over five time points (week 1, 4, 8, 24, year 2) were analysed. Based on shotgun metagenomics, the gut microbial composition and resistome profile were compared in the early life of infants divided into three groups: vaginal delivery/no-antibiotic in the first 4 days of life, C-section/no-antibiotic in the first 4 days of life, and C-section/antibiotic exposed in first 4 days of life. Gentamycin and benzylpenicillin were the most commonly administered antibiotics during this cohort’s first week of life. Results Newborn gut microbial composition differed in all three groups, with higher diversity and stable composition seen at 2 years of age, compared to week 1. An increase in microbial diversity from week 1 to week 4 only in the C-section/antibiotic-exposed group reflects the effect of antibiotic use in the first 4 days of life, with a gradual increase thereafter. Overall, a relative abundance of Actinobacteria and Bacteroides was significantly higher in vaginal delivery/no-antibiotic while Proteobacteria was higher in C-section/antibiotic-exposed infants. Strains from species belonging to Bifidobacterium and Bacteroidetes were generally persistent colonisers, with Bifidobacterium breve and Bifidobacterium bifidum species being the major persistent colonisers in all three groups. Bacteroides persistence was dominant in the vaginal delivery/no-antibiotic group, with species Bacteroides ovatus and Phocaeicola vulgatus found to be persistent colonisers in the no-antibiotic groups. Most strains carrying antibiotic-resistance genes belonged to phyla Proteobacteria and Firmicutes, with the C-section/antibiotic-exposed group presenting a higher frequency of antibiotic-resistance genes (ARGs). Conclusion These data show that antibiotic exposure has an immediate and persistent effect on the gut microbiome in early life. As such, the two antibiotics used in the study selected for strains (mainly Proteobacteria) which were multiple drug-resistant (MDR), presumably a reflection of their evolutionary lineage of historical exposures—leading to what can be an extensive and diverse resistome. Video Abstrac

    The Effect of Gestational and Lactational Age on the Human Milk Metabolome

    Get PDF
    Human milk is the ideal nutrition source for healthy infants during the first six months of life and a detailed characterisation of the composition of milk from mothers that deliver prematurely (<37 weeks gestation), and of how human milk changes during lactation, would benefit our understanding of the nutritional requirements of premature infants. Individual milk samples from mothers delivering prematurely and at term were collected. The human milk metabolome, established by nuclear magnetic resonance (NMR) spectroscopy, was influenced by gestational and lactation age. Metabolite profiling identified that levels of valine, leucine, betaine, and creatinine were increased in colostrum from term mothers compared with mature milk, while those of glutamate, caprylate, and caprate were increased in mature term milk compared with colostrum. Levels of oligosaccharides, citrate, and creatinine were increased in pre-term colostrum, while those of caprylate, caprate, valine, leucine, glutamate, and pantothenate increased with time postpartum. There were differences between pre-term and full-term milk in the levels of carnitine, caprylate, caprate, pantothenate, urea, lactose, oligosaccharides, citrate, phosphocholine, choline, and formate. These findings suggest that the metabolome of pre-term milk changes within 5–7 weeks postpartum to resemble that of term milk, independent of time of gestation at pre-mature delivery

    The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study

    No full text
    Human milk contains a diverse array of bioactives and is also a source of bacteria for the developing infant gut. The aim of this study was to characterize the bacterial communities in human milk and infant faeces over the first 3 months of life, in 10 mother-infant pairs. The presence of viable Bifidobacterium and Lactobacillus in human milk was also evaluated. MiSeq sequencing revealed a large diversity of the human milk microbiota, identifying over 207 bacterial genera in milk samples. The phyla Proteobacteria and Firmicutes and the genera Pseudomonas, Staphylococcus and Streptococcus were the predominant bacterial groups. A core of 12 genera represented 81% of the microbiota relative abundance in milk samples at week 1, 3 and 6, decreasing to 73% at week 12. Genera shared between infant faeces and human milk samples accounted for 70–88% of the total relative abundance in infant faecal samples, supporting the hypothesis of vertical transfer of bacteria from milk to the infant gut. In addition, identical strains of Bifidobacterium breve and Lactobacillus plantarum were isolated from the milk and faeces of one mother-infant pair. Vertical transfer of bacteria via breastfeeding may contribute to the initial establishment of the microbiota in the developing infant intestine

    Quantification of Human Milk Phospholipids: the Effect of Gestational and Lactational Age on Phospholipid Composition

    Get PDF
    Human milk (HM) provides infants with macro- and micronutrients needed for growth and development. Milk phospholipids are important sources of bioactive components, such as long-chain polyunsaturated fatty acids (LC-PUFA) and choline, crucial for neural and visual development. Milk from mothers who have delivered prematurely (<37 weeks) might not meet the nutritional requirements for optimal development and growth. Using liquid chromatography tandem-mass spectrometry, 31 phospholipid (PL) species were quantified for colostrum (<5 days postpartum), transitional (≥5 days and ≤2 weeks) and mature milk (>2 weeks and ≤15 weeks) samples from mothers who had delivered preterm (n = 57) and term infants (n = 22), respectively. Both gestational age and age postpartum affected the PL composition of HM. Significantly higher concentrations (p < 0.05) of phosphatidylcholine (PC), sphingomyelin (SM) and total PL were found in preterm milk throughout lactation, as well as significantly higher concentrations (p < 0.002) of several phosphatidylethanolamine (PE), PC and SM species. Multivariate analysis revealed that PLs containing LC-PUFA contributed highly to the differences in the PL composition of preterm and term colostrum. Differences related to gestation decreased as the milk matured. Thus, gestational age may impact the PL content of colostrum, however this effect of gestation might subside in mature milk

    White-nose syndrome is likely to extirpate the endangered Indiana bat over large parts of its range

    Get PDF
    White-nose syndrome, a novel fungal pathogen spreading quickly through cave-hibernating bat species in east and central North America, is responsible for killing millions of bats. We developed a stochastic, stage-based population model to forecast the population dynamics of the endangered Indiana bat (Myotis sodalis) subject to white-nose syndrome. Our population model explicitly incorporated environmentally imposed annual variability in survival and reproductive rates and demographic stochasticity in predictions of extinction. With observed rates of disease spread, \u3e90% of wintering populations were predicted to experience white-nose syndrome within 20 years, causing the proportion of populations at the quasi-extinction threshold of less than 250 females to increase by 33.9% over 50 years. At the species’ lowest median population level, ca. year 2022, we predicted 13.7% of the initial population to remain, totaling 28,958 females (95%CI=13,330; 92,335). By 2022, only 12 of the initial 52 wintering populations were expected to possess wintering populations of \u3e 250 females. If the species can acquire immunity to the disease, we predict 3.7% of wintering populations to be above 250 females after 50 years (year 2057) after a 69% decline in abundance (from 210,741 to 64,768 [95%CI=49,386;85,360] females). At the nadir of projections, we predicted regional quasi-extirpation of wintering populations in 2 of 4 Recovery Units while in a third region, where the species is currently most abundant,\u3e95% of the wintering populations were predicted to be below 250 females. Our modeling suggests white-nose syndrome is capable of bringing about severe numerical reduction in population size and local and regional extirpation of the Indiana bat

    Synthesis and Profiling of a Diverse Collection of Azetidine-Based Scaffolds for the Development of CNS-Focused Lead-like Libraries

    Get PDF
    The synthesis and diversification of a densely functionalized azetidine ring system to gain access to a wide variety of fused, bridged, and spirocyclic ring systems is described. The in vitro physicochemical and pharmacokinetic properties of representative library members are measured in order to evaluate the use of these scaffolds for the generation of lead-like molecules to be used in targeting the central nervous system. The solid-phase synthesis of a 1976-membered library of spirocyclic azetidines is also described

    Synthesis and Profiling of a Diverse Collection of Azetidine-Based Scaffolds for the Development of CNS-Focused Lead-like Libraries

    Get PDF
    The synthesis and diversification of a densely functionalized azetidine ring system to gain access to a wide variety of fused, bridged, and spirocyclic ring systems is described. The in vitro physicochemical and pharmacokinetic properties of representative library members are measured in order to evaluate the use of these scaffolds for the generation of lead-like molecules to be used in targeting the central nervous system. The solid-phase synthesis of a 1976-membered library of spirocyclic azetidines is also described

    Synthesis and Profiling of a Diverse Collection of Azetidine-Based Scaffolds for the Development of CNS-Focused Lead-like Libraries

    No full text
    The synthesis and diversification of a densely functionalized azetidine ring system to gain access to a wide variety of fused, bridged, and spirocyclic ring systems is described. The in vitro physicochemical and pharmacokinetic properties of representative library members are measured in order to evaluate the use of these scaffolds for the generation of lead-like molecules to be used in targeting the central nervous system. The solid-phase synthesis of a 1976-membered library of spirocyclic azetidines is also described
    corecore