10 research outputs found
Thermal limits of leaf metabolism across biomes
High-temperature tolerance in plants is important in a warming world, with extreme heat waves predicted to increase in frequency and duration, potentially leading to lethal heating of leaves. Global patterns of high-temperature tolerance are documented in animals, but generally not in plants, limiting our ability to assess risks associated with climate warming. To assess whether there are global patterns in high-temperature tolerance of leaf metabolism, we quantified Tcrit (high temperature where minimal chlorophyll a fluorescence rises rapidly and thus photosystem II is disrupted) and Tmax (temperature where leaf respiration in darkness is maximal, beyond which respiratory function rapidly declines) in upper canopy leaves of 218 plant species spanning seven biomes. Mean site-based Tcrit values ranged from 41.5 °C in the Alaskan arctic to 50.8 °C in lowland tropical rainforests of Peruvian Amazon. For Tmax, the equivalent values were 51.0 and 60.6 °C in the Arctic and Amazon, respectively. Tcrit and Tmax followed similar biogeographic patterns, increasing linearly (˜8 °C) from polar to equatorial regions. Such increases in high-temperature tolerance are much less than expected based on the 20 °C span in high-temperature extremes across the globe. Moreover, with only modest high-temperature tolerance despite high summer temperature extremes, species in mid-latitude (~20-50°) regions have the narrowest thermal safety margins in upper canopy leaves; these regions are at the greatest risk of damage due to extreme heat-wave events, especially under conditions when leaf temperatures are further elevated by a lack of transpirational cooling. Using predicted heat-wave events for 2050 and accounting for possible thermal acclimation of Tcrit and Tmax, we also found that these safety margins could shrink in a warmer world, as rising temperatures are likely to exceed thermal tolerance limits. Thus, increasing numbers of species in many biomes may be at risk as heat-wave events become more severe with climate change
Optimising UK urban road verge contributions to biodiversity and ecosystem services with cost-effective management
Urban road verges can contain significant biodiversity, contribute to structural connectivity between other urban greenspaces, and due to their proximity to road traffic are well placed to provide ecosystem services. Using the UK as a case study we review and critically evaluate a broad range of evidence to assess how this considerable potential can be enhanced despite financial, contractual and public opinion constraints. Reduced mowing frequency and other alterations would enhance biodiversity, aesthetics and pollination services, whilst delivering costs savings and potentially being publically acceptable. Retaining mature trees and planting additional ones is favourable to residents and would enhance biodiversity, pollution and climate regulation, carbon storage, and stormwater management. Optimising these services requires improved selection of tree species, and creating a more diverse tree stock. Due to establishment costs additional tree planting and maintenance could benefit from payment for ecosystem service schemes. Verges could also provide areas for cultivation of biofuels and possibly food production. Maximising the contribution of verges to urban biodiversity and ecosystem services is economical and becoming an increasingly urgent priority as the road network expands and other urban greenspace is lost, requiring enhancement of existing greenspace to facilitate sustainable urban development
Global variability in leaf respiration in relation to climate, plant functional types and leaf traits
• Leaf dark respiration (Rdark) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits.
• Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark.
• Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8–28°C). By contrast, Rdark at a standard T (25°C, Rdark25) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark25 at a given photosynthetic capacity (Vcmax25) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark25 values at any given Vcmax25 or [N] were higher in herbs than in woody plants.
• The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs)
Supporting Information (Guilherme Pereira et al. 2019), Journal of Ecology
This file contains the individual replicate data reported in Guilherme Pereira et al. (2019). Details on site location, sampling procedures and species are provided in the paper.
The data is provided to others to freely use in their own analyses - we ask that users to cite Guilherme Pereira et al. (2019) in any output that may emerge
Data from: Trait convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global biodiversity hotspot
1. The Jurien Bay dune chronosequence in south-western Australia’s biodiversity hotspot comprises sites differing in nutrient availability, with phosphorus (P) availability declining strongly with increasing soil age. We have explored the exceptionally high photosynthetic P-use efficiency (PPUE) of Proteaceae in this region, triggering the question what the PPUE of co-occurring species in other families might be along the Jurien Bay chronosequence.
2. We explored how traits associated with PPUE, photosynthetic nitrogen (N)-use efficiency (PNUE) and leaf respiration might converge along the chronosequence, and whether Proteaceae and non-Proteaceae species differ in leaf traits associated with nutrient use.
3. Seven to 10 species were sampled at three sites differing in nutrient availability (ranging from N- to P-limited). Measurements of leaf light-saturated photosynthesis and dark respiration were integrated with measurements of total N and P concentration in both mature and senesced leaves, and leaf mass per unit area (LMA).
4. Contrary to what is known for other chronosequences, rates of photosynthesis and respiration did not decrease with increasing soil age and LMA along the Jurien Bay chronosequence. However, they increased when expressed per unit leaf P. Both N and P were used much more efficiently for photosynthesis on nutrient-poor sites, in both Proteaceae and non-Proteaceae species. Proteaceae had the fastest rate of photosynthesis per unit leaf P, followed by species that preferentially allocate P to mesophyll cells, rather than epidermal cells.
5. Synthesis. Our results show that with declining soil P availability, PPUE of all investigated species from different families increased. Plants growing on the oldest, most nutrient-impoverished soils exhibited similar rates of CO2-exchange as plants growing on more nutrient-rich younger soils, and extraordinarily high PPUE. This indicates convergence in leaf traits related to photosynthetic nutrient use on severely P-impoverished sites
High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function
We tested whether snow gum (Eucalyptus pauciflora) trees growing in thermally contrasting environments exhibit generalizable temperature (T) response functions of leaf respiration (R) and fluorescence (Fo). Measurements were made on pot-grown saplings and field-grown trees (growing between 1380 and 2110m a.s.l.). Using a continuous, high-resolution protocol, we quantified T response curves of R and Fo - these data were used to identify an algorithm for modelling R-T curves at subcritical T's and establish variations in heat tolerance. For the latter, we quantified Tmax [T where R is maximal] and Tcrit [T where Fo rises rapidly]. Tmax ranged from 51 to 57°C, varying with season (e.g. winter > summer). Tcrit ranged from 41 to 49°C in summer and from 58 to 63°C in winter. Thus, surprisingly, leaf energy metabolism was more heat-tolerant in trees experiencing ice-encasement in winter than warmer conditions in summer. A polynomial model fitted to log-transformed R data provided the best description of the T-sensitivity of R (between 10 and 45°C); using these model fits, we found that the negative slope of the Q10-T relationship was greater in winter than in summer. Collectively, our results (1) highlight high-T limits of energy metabolism in E.pauciflora and (2) provide a framework for improving representation of T-responses of leaf R in predictive models
Soil organic carbon storage within each 20(summed median values are displayed in text boxes, values in parenthesis are total 25<sup>th</sup> and 75<sup>th</sup> percentiles), beneath <i>Quercus robur</i> (n = 12), <i>Fraxinus excelsior</i> (n = 11), <i>Acer</i> spp. (n = 12), mixed woodland (n = 8) and grassland (n = 15) by depth class.
<p>The horizontal line within the box indicates median, box boundaries indicate 25<sup>th</sup> and 75<sup>th</sup> percentiles, whiskers indicate highest and lowest values, horizontal lines above or below whiskers indicate outliers.</p
Soil bulk density in each 20 cm depth category.
<p>The horizontal line within the box indicates median, box boundaries indicate 25<sup>th</sup> and 75<sup>th</sup> percentiles, whiskers indicate highest and lowest values, horizontal lines above or below whiskers indicate outliers.</p
Leaf-level photosynthetic capacity in lowland Amazonian and high-1 elevation, Andean tropical moist forests of Peru
We examined whether variations in photosynthetic capacity are linked to variations in the environment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/western Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (Vcmax), and the maximum rate of electron transport (Jmax)), leaf mass, nitrogen (N) and phosphorus (P) per unit leaf area (Ma, Na and Pa, respectively), and chlorophyll from 210 species at 18 field sites along a 3300-m elevation gradient. Western blots were used to quantify the abundance of the CO2-fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than lowland TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf Pa were key explanatory factors for models of area-based Vcmax and Jmax but did not account for variations in photosynthetic N-use efficiency. At any given Na and Pa, the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a small subset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosynthetic capacity of TMFs, with variations in N allocation and Rubisco activation state further influencing photosynthetic rates and N-use efficiency of these critically important forests