188 research outputs found

    Structural elements with mathematically defined surfaces for enhanced structural and acoustic performance

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.Includes bibliographical references (p. 205-209).Two design methods are explored to reduce vibration, minimize unwanted acoustic noise, and increase stiffness in structures. The first design approach is to create nearly isotropic panels with increased stiffness using two-dimensional curvature. These quasi-isotropic designs can be used in lieu of typical panel reinforcements, and can provide an inexpensive alternative to honeycomb sandwich designs. The second approach is to design panels formed into the shape of a mode shape to reduce detrimental modal dynamics. The effects of combining the two-dimensionally curved designs with constrained layer damping is also investigated. Further, it is also the goal of this research that these panels can be inexpensively manufactured with current manufacturing methods (e.g. stamping, rolling, thermoforming, etc.), resulting in a more effective structural element that does not require significant extra cost or weight. Initial analysis was performed using geometric modeling and finite element analysis. Experimental analysis involved both static and dynamic system identification. The experimental results indicate that quasi-isotropic designs can be accomplished with two-dimensional curvature.(cont.) These quasi-isotropic designs increase the stiffness of a panel and raise the natural frequency by a factor of 2 (compared to a flat panel of the same mass). Although the quasi-isotropic designs have no acoustic benefit, they were shown to be effective replacements as honeycomb cores. The mode-shaped designs demonstrated the unique quality of simultaneously reducing vibration and acoustic noise over a broad frequency range (50-10,000 Hz). The mode-shaped panels demonstrated a factor of 3 increase in the natural frequency, a ten-fold reduction in dynamic deflection displacements, and a 3 to 4 dB RMS reduction in the radiation index over a broad frequency range.by Donald Quinn O'Sullivan.Ph.D

    Convective injection and photochemical decay of peroxides in the tropical upper troposphere: Methyl iodide as a tracer of marine convection

    Get PDF
    The convective injection and subsequent fate of the peroxides H2O2 and CH3OOH in the upper troposphere is investigated using aircraft observations from the NASA Pacific Exploratory Mission‐Tropics A (PEM‐Tropics A) over the South Pacific up to 12 km altitude. Fresh convective outflow is identified by high CH3I concentrations; CH3I is an excellent tracer of marine convection because of its relatively uniform marine boundary layer concentration, relatively well‐defined atmospheric lifetime against photolysis, and high sensitivity of measurement. We find that mixing ratios of CH3OOH in convective outflow at 8–12 km altitude are enhanced on average by a factor of 6 relative to background, while mixing ratios of H2O2 are enhanced by less than a factor of 2. The scavenging efficiency of H2O2 in the precipitation associated with deep convection is estimated to be 55–70%. Scavenging of CH3OOH is negligible. Photolysis of convected peroxides is a major source of the HOx radical family (OH + peroxy radicals) in convective outflow. The timescale for decay of the convective enhancement of peroxides in the upper troposphere is determined using CH3I as a chemical clock and is interpreted using photochemical model calculations. Decline of CH3OOH takes place on a timescale of a 1–2 days, but the resulting HOx converts to H2O2, so H2O2 mixing ratios show no decline for ∌5 days following a convective event. The perturbation to HOx at 8–12 km altitude from deep convective injection of peroxides decays on a timescale of 2–3 days for the PEM‐Tropics A conditions

    Wet scavenging of soluble gases in DC3 deep convective storms using WRF-Chem simulations and aircraft observations

    Get PDF
    We examine wet scavenging of soluble trace gases in storms observed during the Deep Convective Clouds and Chemistry (DC3) field campaign. We conduct high-resolution simulations with the Weather Research and Forecasting model with Chemistry (WRF-Chem) of a severe storm in Oklahoma. The model represents well the storm location, size, and structure as compared with Next Generation Weather Radar reflectivity, and simulated CO transport is consistent with aircraft observations. Scavenging efficiencies (SEs) between inflow and outflow of soluble species are calculated from aircraft measurements and model simulations. Using a simple wet scavenging scheme, we simulate the SE of each soluble species within the error bars of the observations. The simulated SEs of all species except nitric acid (HNO_3) are highly sensitive to the values specified for the fractions retained in ice when cloud water freezes. To reproduce the observations, we must assume zero ice retention for formaldehyde (CH_2O) and hydrogen peroxide (H_2O_2) and complete retention for methyl hydrogen peroxide (CH_3OOH) and sulfur dioxide (SO_2), likely to compensate for the lack of aqueous chemistry in the model. We then compare scavenging efficiencies among storms that formed in Alabama and northeast Colorado and the Oklahoma storm. Significant differences in SEs are seen among storms and species. More scavenging of HNO_3 and less removal of CH_3OOH are seen in storms with higher maximum flash rates, an indication of more graupel mass. Graupel is associated with mixed-phase scavenging and lightning production of nitrogen oxides (NO_x), processes that may explain the observed differences in HNO_3 and CH_3OOH scavenging

    The Odyssey of Dental Anxiety: From Prehistory to the Present. A Narrative Review

    Get PDF
    Dental anxiety (DA) can be considered as a universal phenomenon with a high prevalence worldwide; DA and pain are also the main causes for medical emergencies in the dental office, so their prevention is an essential part of patient safety and overall quality of care. Being DA and its consequences closely related to the fight-or-flight reaction, it seems reasonable to argue that the odyssey of DA began way back in the distant past, and has since probably evolved in parallel with the development of fight-or-flight reactions, implicit memory and knowledge, and ultimately consciousness. Basic emotions are related to survival functions in an inseparable psychosomatic unity that enable an immediate response to critical situations rather than generating knowledge, which is why many anxious patients are unaware of the cause of their anxiety. Archeological findings suggest that humans have been surprisingly skillful and knowledgeable since prehistory. Neanderthals used medicinal plants; and relics of dental tools bear witness to a kind of Neolithic proto-dentistry. In the two millennia BC, Egyptian and Greek physicians used both plants (such as papaver somniferum) and incubation (a forerunner of modern hypnosis, e.g., in the sleep temples dedicated to Asclepius) in the attempt to provide some form of therapy and painless surgery, whereas modern scientific medicine strongly understated the role of subjectivity and mind-body approaches until recently. DA has a wide range of causes and its management is far from being a matter of identifying the ideal sedative drug. A patient's proper management must include assessing his/her dental anxiety, ensuring good communications, and providing information (iatrosedation), effective local anesthesia, hypnosis, and/or a wise use of sedative drugs where necessary. Any weak link in this chain can cause avoidable suffering, mistrust, and emergencies, as well as having lifelong psychological consequences. Iatrosedation and hypnosis are no less relevant than drugs and should be considered as primary tools for the management of DA. Unlike pharmacological sedation, they allow to help patients cope with the dental procedure and also overcome their anxiety: achieving the latter may enable them to face future dental care autonomously, whereas pharmacological sedation can only afford a transient respite

    Can polychlorinated biphenyl (PCB) signatures and enantiomer fractions be used for source identification and to age date occupational exposure?

    Get PDF
    Detailed polychlorinated biphenyl (PCB) signatures and chiral Enantiomer Fractions (EFs) of CB-95, CB-136 and CB-149 were measured for 30 workers at a transformer dismantling plant. This was undertaken to identify sources of exposure and investigate changes to the PCB signature and EFs over different exposure periods. Approximately 1.5 g of serum was extracted and PCB signatures were created through analysis by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) and EFs calculated following analysis by gas chromatography with high resolution mass spectrometry (GC-HRMS). A total of 84 PCBs were identified in the serum samples with concentrations of the 7 indicator PCBs ranging from 11-350 ng g(-1) of serum (1.2-39 ÎŒg g(-1) lipid). The PCB signatures were interpreted using principal component analysis (PCA) which was able to distinguish workers with background or recent minimal exposure from those with prolonged occupational exposure. Occupationally exposed individuals had a similar PCB profile to Aroclor A1260. However, individuals with prolonged exposure had depleted proportions of several PCB congeners that are susceptible to metabolism (CB-95, CB-101 and CB-151) and elevated proportions of PCBs that are resistant to metabolism (CB-74, CB-153, CB-138 and CB-180). The results also identified a third group of workers with elevated proportions of CB-28, CB-60, CB-66, CB-74, CB-105 and CB-118 who appeared to have been exposed to an additional source of PCBs. The results show near complete removal of the CB-95 E2 enantiomer in some samples, indicating that bioselective metabolism or preferential excretion of one enantiomer occurs in humans. By considering PCB concentrations along with detailed congener specific signatures it was possible to identify different exposure sources, and gain an insight into both the magnitude and duration of exposure

    Airborne rhinovirus detection and effect of ultraviolet irradiation on detection by a semi-nested RT-PCR assay

    Get PDF
    BACKGROUND: Rhinovirus, the most common cause of upper respiratory tract infections, has been implicated in asthma exacerbations and possibly asthma deaths. Although the method of transmission of rhinoviruses is disputed, several studies have demonstrated that aerosol transmission is a likely method of transmission among adults. As a first step in studies of possible airborne rhinovirus transmission, we developed methods to detect aerosolized rhinovirus by extending existing technology for detecting infectious agents in nasal specimens. METHODS: We aerosolized rhinovirus in a small aerosol chamber. Experiments were conducted with decreasing concentrations of rhinovirus. To determine the effect of UV irradiation on detection of rhinoviral aerosols, we also conducted experiments in which we exposed aerosols to a UV dose of 684 mJ/m(2). Aerosols were collected on Teflon filters and rhinovirus recovered in Qiagen AVL buffer using the Qiagen QIAamp Viral RNA Kit (Qiagen Corp., Valencia, California) followed by semi-nested RT-PCR and detection by gel electrophoresis. RESULTS: We obtained positive results from filter samples that had collected at least 1.3 TCID(50 )of aerosolized rhinovirus. Ultraviolet irradiation of airborne virus at doses much greater than those used in upper-room UV germicidal irradiation applications did not inhibit subsequent detection with the RT-PCR assay. CONCLUSION: The air sampling and extraction methodology developed in this study should be applicable to the detection of rhinovirus and other airborne viruses in the indoor air of offices and schools. This method, however, cannot distinguish UV inactivated virus from infectious viral particles

    Vulnerabilities and fisheries impacts:The uncertain future of manta and devil rays

    Get PDF
    Manta and devil rays of the subfamily Mobulinae (mobulids) are rarely studied, large, pelagic elasmobranchs, with all eight of well-evaluated species listed on the IUCN Red List as threatened or near threatened. Mobulids have life history characteristics (matrotrophic reproduction, extremely low fecundity, and delayed age of first reproduction) that make them exceptionally susceptible to overexploitation. Targeted and bycatch mortality from fisheries is a globally important and increasing threat, and targeted fisheries are incentivized by the high value of the global trade in mobulid gill plates. Fisheries bycatch of mobulids is substantial in tuna purse seine fisheries. Thirteen fisheries in 12 countries specifically targeting mobulids, and 30 fisheries in 23 countries with mobulid bycatch were identified. Aside from a few recently enacted national restrictions on capture, there is no comprehensive monitoring, assessment or control of mobulid fisheries or bycatch. Recent listing through the Convention on the International Trade in Endangered Species (CITES) may benefit mobulids of the genus Manta (manta rays), but none of the mobulids in the genus Mobula (devil rays) are protected. The relative economic costs of catch mitigation are minimal, particularly compared with a broad range of other, more complicated, marine conservation issues

    Association of cord blood digitalis-like factor and necrotizing enterocolitis

    Get PDF
    Endogenous digoxin-like factor (EDLF) has been linked to vasoconstriction, altered membrane transport and apoptosis. Our objective was to determine whether increased EDLF in the cord sera of preterm infants was associated with an increased incidence of necrotizing enterocolitis (NEC)
    • 

    corecore