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ABSTRACT

Two design methods are explored to reduce vibration, minimize unwanted acoustic noise,
and increase stiffness in structures. The first design approach is to create nearly isotropic
panels with increased stiffness using two-dimensional curvature. These quasi-isotropic
designs can be used in lieu of typical panel reinforcements, and can provide an inexpen-
sive alternative to honeycomb sandwich designs. The second approach is to design panels
formed into the shape of a mode shape to reduce detrimental modal dynamics. The effects
of combining the two-dimensionally curved designs with constrained layer damping is
also investigated. Further, it is also the goal of this research that these panels can be inex-
pensively manufactured with current manufacturing methods (e.g. stamping, rolling, ther-
moforming, efc.), resulting in a more effective structural element that does not require
significant extra cost or weight.

Initial analysis was performed using geometric modeling and finite element analysis.
Experimental analysis involved both static and dynamic system identification. The exper-
imental results indicate that quasi-isotropic designs can be accomplished with two-dimen-
sional curvature. These quasi-isotropic designs increase the stiffness of a panel and raise
the natural frequency by a factor of 2 (compared to a flat panel of the same mass).
Although the quasi-isotropic designs have no acoustic benefit, they were shown to be
effective replacements as honeycomb cores. The mode-shaped designs demonstrated the
unique quality of simultaneously reducing vibration and acoustic noise over a broad fre-
quency range (50-10,000 Hz). The mode-shaped panels demonstrated a factor of 3
increase in the natural frequency, a ten-fold reduction in dynamic deflection displace-
ments, and a 3 to 4 dB RMS reduction in the radiation index over a broad frequency range.
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Chapter 1

INTRODUCTION

1.1 Problem Definition

Frequently, there is a trade-off between reducing detrimental vibration and minimizing
acoustic noise in structural members with weight and space restrictions. Detrimental
vibration, vibration that leads to increased wear and harmful structural coupling, often
occurs at less than audible frequencies where large displacements occur. To help counter-
act these harmful vibrations the structure’s stiffness is commonly increased (often at a sig-
nificant cost), which can lead to greater acoustic noise. On the other hand, if the acoustic
noise is the primary source of concern, then the best way to reduce audible noise is often
by adding mass and reducing stiffness or by incorporating bulky absorption material. By
increasing mass and reducing stiffness, harmful coupling between the structure and the
surrounding acoustic medium can be greatly reduced, but this is undesirable for structures
requiring high stiffness and low weight (i.e. many vehicles and low cost enclosures). This
method also directly counters the methodology stated above when trying to reduce harm-
ful vibration. Additionally, the use of acoustic absorption material is frequently limited by
space restrictions, as very thick layers of absorptive material are required for lower audi-
ble frequencies. In short, it is difficult to design machine enclosure and reinforcement
panels that meet structural and acoustic requirements while maintaining minimum weight,

space, and cost requirements.
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1.2 Desired Contributions

The research attempts to make the following contributions to address the above problem
of reducing unwanted compliance, vibration and acoustic noise: |
1. Demonstrate that it is beneficial to incorporate two-dimensional curvature
and mathematically defined surfaces into structural panels.

2. Design two-dimensionally curved panel designs that increase stiffness and
minimize unwanted modal dynamics to minimize acoustic noise.

3. Demonstrate that quasi-isotropic panels can be designed using mathematical
algorithms and two-dimensional curvature.

4. Show that greater levels of damping can be achieved when constrained
damping layers are combined with two-dimensionally curved panel designs.

5. Provide an inexpensive alternative to honeycomb and reinforced panel
designs. ‘

1.3 Motivation

Traditional machine and building elements rely primarily on rectilinear components. The
assumption that the components must be flat or rectilinear leads to a certain amount of
convenience during assembly, but also limits the performance of certain components. The
basis of this work is that desirable behavioral properties can be attained simply by adding
intelligently designed two-dimensional curvature to appropriate components. By rejecting
the use of standard flat panels, fundamentally new designs can be developed that demon-
strate unique and improved properties compared to standard panels, without the use of

secondary treatments and modifications.

It is important to identify why noise reduction panels and machine enclosures are neces-
sary. In general, industrial machine enclosures are used to restrict access to parts, reduce
acoustic noise, provide structural reinforcement, and improve aesthetics. Industrial
machines use noise enclosures to ensure a quiet work environment. Noise levels can
exceed 100 dB in some areas where heavy machinery is used, causing safety issues for
employees and disturbing neighboring areas [Lord, 1987]. Enclosures in industry also

serve to protect the machines and the operators. By restricting access to a machine’s inte-
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rior, an enclosure acts as a barrier that keeps out harmful contaminants and debris while
simultaneously protecting the operator from dangerous mechanisms. Finally, industrial
machines sometimes require enclosures merely to improve aesthetics, making a product

more marketable.

Vehicle enclosures are necessary for
the reasons stated above but they also
provide structural reinforcement and
often aid in locomotion. Aircraft pan-
els and floor elements not only serve
to enclose the aircraft, but they also
provide a majority of the structural
reinforcement, carrying more of the
load than the aircraft frame. In addi-
tion, aircraft panels are essential in

forming the lifting structure of the

wing, enabling the aircraft to fly. In
boats the panel enclosure also pro-
vides a great deal of structural rein-
forcement as well as ensuring a sleek

and buoyant craft. Among other rea-

sons, automobiles use panels exten-

. Figure 1.1 An example of an appliance with two-
sively to ensure passenger comfort, dimensionally curved panels to reduce vibration (ampli-
. ) tude exaggerated for effect).
reinforce flimsy members (e.g. hoods

and trunks), and protect passengers in the event of an accident.

Another application for enclosures is in home and office appliances. Computers, washing
machines, refrigerators, copiers, and many other appliances require machine enclosures
for many of the above reasons, but also have a much greater restriction on acoustic noise

due to the environment in which they must operate. In addition to the greater restriction
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on acoustic noise there is often a greater restriction on space, which makes the task of qui-
eting more challenging. The quality of many appliances is sometimes largely determined

by how quietly they operate.

A final application is as improved and inexpensive alternative to cores in sandwich type
panels. Examples of this type of construction can be found in mundane objects such as
cardboard, and in exotic structures like air and space-craft. The goal is to be able to
replace unidirectional and honeycomb sandwich material with two-dimensionally curved
panels that demonstrate better performance than typical cardboard designs, and provide a

less expensive alternative to exotic honeycomb designs.

The many uses and requirements of enclosure panels is due in part to the varied ways in
which noise and vibration permeates and escapes structures. Three basic categories of
noise propagation that relate to enclosures can be identified: structure to structure cou-
pling, acoustic to structure coupling, and structure to acoustic coupling. A significant
challenge is developing an enclosure.panel that can perform well in all three categories.
The first category is very common in machine enclosures where the enclosure is used to
restrict access and improve aesthetics, rather than minimize noise. Unfortunately, vibrat-
ing machines that do not have acoustic noise problems without an enclosure may demon-
strate acoustic noise problems when An enclosure is applied. Further, structural coupling
may cause the panels to vibrate excess,i.vely, causing exaggerated vibration of the machine,
perhaps reducing performance and operating life. The second category is prevalent in
vehicles, such as launch vehicles, where excess acoustic noise can couple strongly with
structures leading to excess wear and severe stresses [Gerard, 1989]. The same is true for
boundary layer noise in aircraft and road noise in automobiles, although wear and stress
are less severe, the resulting internal acoustic noise is no less annoying. The last category
is important in any enclosure where acoustic noise is a factor. An appliance, such as a
washing machine, that demonstrates a large amount of vibration can lead to significant
coupling from the flimsy body panels to the acoustic medium. Additionally, coupling

from the structure to the acoustics is likely significant in the previous two categories.
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Therefore, to design an effective enclosure it is necessary to understand the different trans-

mission paths and to be able to mitigate the different types of coupling simultaneously.

The performance of panel designs must take into consideration the cost of production of
the panels. A better performing panel that costs significantly more to manufacture will
likely prove to be of little benefit. Therefore, it is necessary to consider design and manu-
facturing complexity when determining the overall benefit of the panel. Part of the goal of
the panel designs contained herein is to minimize additional costs by using standard man-
ufacturing methods. The panels in this thesis are intended to be manufacturable using
common techniques such as stamping (used extensively in automobile manufacturing),
thermoforming (i.e. injection molding and vacuum forming for plastic panels), and rolling

(for producing large amounts of panels for generic use).

In summary, the goal of the research is to design new two-dimensionally curved panels
that perform better than flat and one-dimensionally curved panels. The panel performance
is gauged in terms of its structural and acoustic properties, as well as the cost to produce

the panels.

1.4 Past and Current Solutions

To develop innovative designs it is important to identify research that has been conducted
in the area of panel design, dynamics, and performance. It is also necessary to investigate
whether curvature has been used in panel designs for the purposes previously stated. Cur-
rent state of the art research for machine enclosures and panels can be divided into two
main categories: passive and active. Passive designs utilize materials, geometry and
damping to enhance performance and require no control system. Active designs, on the
other hand, utilize a combination of actuators, sensors, and control algorithms to improve
performance. Active systems generally require secondary modification and are often of
much greater complexity than passive designs. The panels discussed in this thesis fall into

the category of passive designs.
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1.4.1 Passive Panel Design and Research

Many different passive modifications and panel designs have been developed through the
years to alter and enhance panel performance. Generally the designs or modifications are
intended to address either acoustic noise or vibration. Rarely are the designs intended to
address both. Most state of the art passive designs that reduce acoustic noise were devel-
oped for architectural purposes, although many passive designs have been developed for
automobiles and aircraft [Crocker, 1993; Lord, 1987; Crocker, 1975]. Designs developed
to reduce vibration are more common for machine enclosures and vehicles where the
excess vibration disturbs other aspects of system operation. In addition to reducing acous-
tic noise and vibration, panels have been designed to alter a structure’s static mechanical

properties or to change a structure’s appearance and shape.

Buildings (homes, factories and offices) often require special treatment to minimize noise
in environments where quiet is required. Research in architectural engineering has devel-
oped several innovations that are used to reduce transmission of noise between rooms or
enclosures. Two effective designs that utilize laminar/sandwich designs are the “Shear
Wall” (described in U.S. Patents 3,087,570, 3,087,574, and 3,249,178) [Watters, 1966;
Watters, 1963; Watters & Kurtze, 1963], and the “Coincident Wall” (described in U.S.
Patent 3,422,921) [Warnaka, 1969]. The “Shear Wall” increases transmission loss by
increasing the critical frequency of the wall. By placing a constrained damping layer of
material between the outer face of the wall and the inner frame of the wall, increases in the
critical frequency can be achieved thereby increasing the amount of transmission loss at
higher frequencies. The “Coincident Wall” also utilizes a sandwich design. The primary
notion behind the design is to reduce the critical frequency of the wall or panel such that it
is near its first fundamental frequency, while increasing the damping of the wall or panel.
This allows for greater transmission loss at higher frequencies (frequencies above the crit-

ical frequency).

Other more common designs for reducing acoustic noise exist. An example of a portable

design is a lead curtain, which minimizes stiffness and maximizes mass to increase trans-
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mission loss. Perforated panels have been used to reduce some acoustic noise. The perfo-
rations cause localized wave cancellation of the fluid and thus act as a sound absorber.
The most common panel design for acoustic absorption utilizes add-on material such as
foam or fiberglass that has a high coefficient of absorption. The most common example of
this panel design is the ubiquitous ceiling tile, often used in offices. Other designs are
laminar and combine a stiff reinforcing panel covered in absorption material. Wedged
shaped panels can be found in anechoic chambers and sound studios. In general, the diffi-
culties with using sound absorption material are that it is prohibitively bulky, requiring

thick material for lower frequencies, and it degrades over time.

Panel designs for vehicles and some appliances often utilize non-flat panel designs to
increase or alter structural properties. Most of these designs incorporate ribs or reinforc-
ing members to increase the stiffness of a panel. Hoods and trunks of automobiles often
place reinforcing members on the underside of the panel so that it does not deflect or
vibrate excessively. A significant amount of research has been performed by the automo-
tive industry to reduce both acoustic noise and vibration, but reducing acoustic noise has

proven to be the more challenging of the two problems [Mraz, 1993].

Several studies have been performed on various components to try and determine optimal
rib reinforcement designs. Yikang Zhang et. al. performed a dynamic analysis to deter-
mine optimal rib patterns for exhaust system components [Zhang, 1991]. Kevin Zhang ez.
al. applied a similar technology to automotive floor panels to minimize acoustic noise
[Zhang, 1997; Zhang, 1995]. Nachimuthu et. al. used finite and boundary element analy-
sis to try and determine optimal bead patterns on automotive panels for powertrain noise
reduction [Nachimuthu, 1997]. White et. al. also applied finite element analysis, coupled
with shape optimization, to try and determine optimal reinforcing rib geometry for an air
cleaner enclosure [White, 1997]. In addition to these studies on automobile components,
Leheta er. al. performed a similar rib reinforcement design optimization for longitudinally
stiffened ship bottoms [Leheta, 1997]. While the above explored the positive aspects of

reinforced panel designs, VanBuskirk pointed out that merely stiffening panels may in fact
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lead to increased acoustic noise, especially in regions where the ear is most sensitive [ Van-

Buskirk, 1993].

In addition to the optimization of reinforced panels, research has been performed to deter-
mine more optimal methods and designs for damping panels. Nagai et. al. researched the
benefits of using constrained damping layers in steel automobile panels to minimize vibra-
tion and noise. Their design was a simple laminar structure that placed a consfrained
damping layer between flat sheets of steel, resulting in improved damping characteristics.
More importantly, they showed that the formability, weldability and strength of the panels
were not greatly inhibited by the constrained damping layer [Nagai, 1991]. Cheng et. al.
performed a design optimization on panels treated with a variable thickness Visco-elastic‘
coating to maximize damping. Their analysis involved a cost function that penalized the
additional weight of the visco-elastic coating and demonstrated the benefits of using free
damping layers as opposed to constrained damping layers [Cheng, 1995]. Finally, Qian ez.
al. explored the benefits of various damping materials and methods on ribbed reinforced
panels. Their work concluded that constrained damping layers provided the greatest
increase in damping, especially when combined with a large number of ribs (although no

rational for the better performance is provided) [Qian, 1997].

Several researchers have chosen to examine the machine enclosure design process from a
macroscopic perspective, analyzing the entire enclosure and modifying various compo-
nents to minimize vibration and noise. Oka et. al. sought to reduce “boom-noise”, vibra-
tions that strongly couple to the first several acoustic modes of an enclosure [Oka, 1991].
Iwahara et. al. used a least squares method coupled with finite element analysis to mini-
mize unwanted vibrations in automobile bodies, and to determine optimal reinforcement
for convertible automobiles [Iwahara, 1991]. Others have used these more global
approaches to try and determine the most important sources of noise and transnﬁssion into

enclosures and automobiles [Hendricx, 1997; Drozdova, 1997; Panov, 1994].
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Highly relevant to this thesis is research that investigates shell and curved panel designs to
reduce vibration and acoustic noise. Ng examined the use of one-dimensional curvature
on a perforated panel for a close-fitting noise enclosure. The panels were studied using an
analytic model. Ng examined the influence of cylindrical curvature on the panel’s stiff-
ness and transmission loss characteristics, and demonstrated that the modal dynamics shift
upward with increasing curvature [Ng, 1995]. Zhang et. al. also investigated the influence
of one-dimensional curvature on a muffler casing. The research was performed using
finite element analysis. Their research demonstrated that curvature has a large influence
on the structural dynamics, producing a shift in modal frequencies, and may be helpful in
reducing the radiation efficiency of modal dynamics [Zhang, 1995]. Steyer, Chung, and
Brassow performed research on two-dimensionally curved shells to help minimize vibra-
tion and noise for the side cover of transmission casings. To perform the analysis finite
element analysis and design optimization software was utilized. An initial study analyzed
a square panel with circular domed curvature and multi-lobed curvature, and showed a
dramatic increase in natural frequencies [Steyer, 1997]. Another study used design opti-
mization software to determine an even more rigid design to attain a specific first natural
frequency [Chung, 1997]. Although the research did not show specific benefits to a
reduction in vibration or noise, the two-dimensional curvature demonstrated a strong

influence on the panel dynamics.

Historically, curvature in structures has proven to be very beneficial. The Greeks used cir-
cular columns to carry the most load with a minimum cross section and hence the least
amount of material. The Romans used arches to distribute loads and minimize stresses in
many of their structures. Curvature in structures has also proven to be acoustically benefi-
cial in amphitheaters, concert halls, and sound studios and can be used to focus or disperse
sound waves. Biological examples of curvature are apparent in trees, coral, a turtle’s
shell, and in the bones of our bodies, to name a few. Panels have used curvature much less
in the past, the one exception being corrugated panels. Corrugated panels have been used
extensively in architectural structures to provide light, inexpensive, but rigid walls, floors

and roofs. Corrugated designs have also been used extensively in reinforced cardboard
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designs. The one significant drawback of the one-dimensionally curved design of corru-
gated panels is their orthotropic behavior that can lead to undesirable structural and acous-
tic behavior (the details of this will be discussed in Chapter 2). Beyond corrugated panels,
very little advancement has been made in terms of using curvature, especially two-dimen-
sional curvature, in panel designs. However, there is a large pool of research in mechanics

and dynamics that focuses on the behavior of shells.

Shells are thin-walled structures that have varying degrees of curvature. Shells with two-
dimensional éurvature are often referred to as doubly curved shells or panels. The major-
ity of this research has focused on developing analytical models for these shells, some
with rectangular boundary conditions [Liew, 1996; Bhimaraddi, 1991]. Others have con-
centrated on the dynamics of these shells exclusively when combined with composité
materials [Chun, 1995; Chaudhuri, 1994; Kabir, 1991]. While a small amount of this
research is focused towards an application, such as turbine blades [Hu, 1999], most of the
research is pure in the sense that it does not mention a specific field of use. Unfortunately,
much of this pure research of shells has limited application to this thesis because of many
of the assumptions and restrictions placed on the models (i.e. limited degree of curvature,
lack of multiple inflection points, simplified boundary conditions and panel shapes). As a
result, most of the initial analysis in this thesis will rely on geometric approximation meth-

ods and finite element analysis.

1.4.2 Active Panel Research

Active control is considered the final option when trying to minimize noise and vibration.
It is applied when all passive design techniques prove ineffective or infeasible due to
weight, space, or other restrictions. Active control techniques are generally feedback or
feed-forward based control systems that attempt to minimize or alter noise and vibration
to maintain performance requirements. They utilize a variety of actuators (e.g. shakers,
piezoceramic patches, speakers, efc.), sensors (e.g. accelerometers, optical sensors, micro-

phones, efc.), amplifiers, and control boards, and vary greatly in size and complexity.
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In the past fifteen years there has been a large increase in research on actively controlled
panels, and they have found uses in many aircraft, space structures, and other vehicles. A
majority of the structural control techniques utilize piezoceramic patches epoxied onto
panels, coupled with strain sensors or accelerometers and feedback control routines, such
as rate feedback [Hansen, 1998; Reza Moheimani, 1998; Berkman, 1997; Clark, 1993;
Mathur, 1993]. These designs have proven effective in reducing structural vibration, but
less effective in reducing acoustic noise. Some research has even been performed on pan-
els that have imbedded actuators and sensors within a composite matrix [Bingham, 1998].
More common techniques to actively suppress acoustic noise often involve the use of
. speakers that can locally cancel acoustic noise that emanates from panels [Char, 1994;

Rossetti, 1994].

Although active control techniques have been shown to improve performance, they are
often very complex and expensive. Thus, they have found use in only the most exotic of
applications. In addition, they are less robust than most passive designs due to their reli-
ance on electronic components and multiple external systems. Part of the goal of this
research is to reduce the need for these complex actively controlled panels by demonstrat-
ing that greater performance can be attained with the novel passive designs introduced in

this thesis.

1.5 Research Hypotheses and Approach

This research explores the validity of three hypotheses. One, that two-dimensionally
curved panels can exhibit isotropic behavior at lower frequencies, allowing for inexpen-
sive methods of stiffening many designs. Two, especially detrimental modes of vibration
can be eliminated from a panel’s dynamics by forming the panel into the shape of the
unwanted mode (with the amplitude being greater than the elastic deformation range).
Three, increased damping over damped flat panels can be obtained by incorporating visco-
elastic or constrained damping layers in the two-dimensionally curved designs. All of

these hypotheses are based on the notion that two-dimensionally curved panels can pro-
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vide greater performance in reducing unwanted acoustic noise and vibration than their flat
and one-dimensional counterparts. These hypotheses are explored through analytic and

numerical methods and experimental verification.

1.5.1 Hypotheses

The first hypothesis is that a two-dimensionally curved panel can be designed that has
nearly the same bending stiffness in all directions. A quasi-isotropic design can be used in
many application were orthotropic behavior is undesirable. This includes architectural
members, machine components, and enclosures. Two-dimensional designs may also
prove to be a better performing design than those currently used in reinforced panel
designs (e.g. cardboard), and may provide an inexpensive alternative to honeycomb,
which is very expensive. A two-dimensionally curved design can be simply manufactured
out of sheet using standard techniques such as stamping, rolling, or thermoforming (very
common in manufacturing processes of automobiles and other machine components),
while a honeycomb sandwich design often requires more precise and less automated man-

ufacturing techniques and is therefore more difficult and expensive to manufacture.

The second hypothesis forwards a method of minimizing the effect of particularly detri-
mental modes of vibration. The foundation for this hypothesis is that if a panel is formed
into a particular mode shape, then any deformation of the panel similar to that shape must
be in stretching, and therefore must occur at a considerably higher frequency. This can be
especially beneficial when a particular mode dominates the vibration or acoustic transmis-
sion of noise, as is often the case with the first mode of vibration. The hypothesis does not
claim that this method eliminates all unwanted modes, but rather it claims that a certain
unwanted mode can be inhibited from occurring. Some of the resulting mode shapes will
undoubtedly demonstrate undesirable characteristics, but much less so than the removed
mode shape. The resulting panel will also have greatly increased stiffness, which is bene-

ficial in reducing unwanted vibration.
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The final hypothesis asserts that when the panel designs of hypothesis one and two (or any
two-dimensionally curved panel) are combined with constrained or visco-elastic damping
layers greater damping can be obtained than would otherwise be obtained with flat designs
that also use damping layers. The reasoning behind this hypothesis is two-fold. One, the
two-dimensional curvature moves the damping layers away from the neutral axis of bend-
ing, which may lead to greater deformation of the damping layer. Since the amount of
damping is a positive function of the amount of deformation in the damping layer (i.e.
more strain leads to greater damping), the two-dimensionally curved panels will demon-
strate greater damping. The second reason is that the two-dimensional curvature of the
panel and the constrained damping layer is subjected to multi-directional deformation
when bent. Unlike a flat panel, which primarily deforms in a single direction, a two-
dimensionally curved panel is subjected to deformation in many directions simulta-

neously, leading to an overall greater amount of strain and thus damping.

1.5.2 Research Approach

The research described in this thesis progresses through four levels of analysis. First, ana-
Iytic relations between the panel geometry and its behavior are established. Unfortunately,
modern analytic models are unable to characterize the complex behavior of many two-
dimensionally curved panels. Thus, the second level of analysis utilized a numerical
approach to gain insight into the panels’ geometry and dynamic characteristics. The third
level of analysis utilizes finite element analysis to determine more exact dynamic and
modal characteristics of the panel. Finally, comparative experimental analysis is per-

formed to demonstrate the panels acoustic and vibration responses and behavior.

The first level, analytic analysis, is used to gain estimates of modal frequencies, gain
insight into the mechanical behavior, analyze panel geometry, and determine quasi-isotro-
pic shapes. This stage of research relies primarily on classical mechanics and differential
geometry. It became clear early that due to the complexity of the designs, analytical mod-

els are of limited use and accuracy.
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The second and third levels of analysis rely on numerical methods to develop and analyze
panel designs. Matlab is also used to apply some of the analytic techniques numerically so
that many designs can be quickly developed and examined. In Matlab, routines are writ-
ten to generate panels using Fourier based designs, statistically based designs, point by
point designs, and optimization methods that utilize least square cost functions. The most
promising of these designs, based on estimated performance, manufacturability, and sim-
plicity, are then analyzed using finite element analysis when possible. The designs are
exported from Matlab into PRO\Engineer and analyzed using PRO\Mechanica. Primarily,
modal analysis is used to gain insight into the panels’ expected behavior. The finite ele-
ment analysis is also used, to some extent, as a design iteration method, whereby designs
are altered once their modal behavior was determined. Once a limited set of candidate

designs are determined, experimental analysis is performed.

Experiments to examine both the structural and acoustic behavior of the panels is per-
formed on three different testbeds. The testbeds are essentially rectangular enclosures that
are designed to have minimal responsé, acoustically and structurally, on five sides so that
the side with the experimental panel dominates the transfer function response. A small
enclosure is used to mimic the setting of an actual machine enclosure, rather than using a
standardized testing method that may or may not correlate to machine enclosures. Both
structural and acoustic excitation and sensing methods are used in conjunction with sev-
eral testing configurations that emphasize various enclosure settings. In addition, static
bending tests are performed to examine the static stiffness properties of the sandwich

panel designs.

1.6 Overview

Chapter 2 is dedicated to reviewing some of the necessary background knowledge in
vibration and acoustics. The relations and differences between structural and acoustic
behavior is emphasized. In addition, some of the basic mechanics of panels are discussed

as well as the theory behind visco-elastic and constrained damping.
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Chapter 3 focuses on two-dimensionally curved designs with lower order isotropy.
Designs are developed and analyzed with the use of differential geometry and numerical
methods. Analysis of these designs are performed using both analytic and numerical mod-
els. Finite element analysis results are included that demonstrate the modal characteristics

of some of the designs as well as the resulting structural properties.

Chapter 4 investigates the theory behind mode-shaped designs. It evaluates how particu-
lar modes can be eliminated and estimates projected results of these designs, including the
benefits of eliminating unwanted modes. These designs are then analyzed using numeri-
cal methods, including finite element analysis. Modal results are provided to demonstrate

the elimination of the unwanted mode.

Chapter 5 discusses prototype manufacturing and the experimental setup and goals. Issues
such as scaling, interference, realistic complexity, and experimental weaknesses are dis-
cussed. Manufacturing of prototypes for the experiments is the primary focus of the man-
ufacturing section, but some general discussion of manufacturing processes for

commercial production are also addressed.

Chapter 6 presents the final results of the research, primarily focusing on the experimental
results and how they relate to the earlier presented hypotheses. The performance of the

panels are discussed, as well as means of improving performance.

Finally, Chapter 7 provides conclusions of the research. The benefits as well as the draw-
backs of the designs are analyzed and recommendations are made for their use. In addi-

tion, suggestions for future work are made to maximize the benefit of this research.
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Chapter 2

VIBRATION AND ACOUSTICS
BACKGROUND

The purpose of this chapter is to discuss the principles of vibration and acoustics upon
which the hypotheses and research were based. Basic principles that strongly affect the
behavior of unwanted noise and vibration in machine enclosures are also discussed. In
addition, this chapter emphasizes the principles associated with structural-acoustic cou-
pling. The following is not meant to be an all inclusive source of information, but rather a

brief background necessary to understand the current research.

2.1 Noise and Vibration Transmission Paths

Ideally when trying to control noise and vibration it is desirable to eliminate the problem
at its source. Unfortunately, this is prohibitive in many situations where the source is inac-
cessible (e.g. bearings inside a mechanism), uncontrollable (e.g. aerodynamic noise on
automobiles and aircraft), or simply unlocatable (e.g. shockwaves in steam pipes). In fact,
in many cases it proves costly to try to mitigate noise and vibration at its source. As a
result, often the best method of controlling unwanted noise or vibration is along its trans-

mission path, preferably closest to the source of noise.

For most machines, there are three types of transmission paths through which unwanted
energy (i.e. noise and vibration) travels. The most common (and most considered) trans-
mission path is the solid structure out of which a machine or structure is made. The struc-

ture can transmit several different kinds of disturbances, commonly referred to as

37
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vibrations. The vibrations in a structural transmission path can often be altered by chang-
ing the mass, stiffness and damping of the structure. The second transmission path of
interest is through gas, most commonly air. The disturbances in the gas are generally
referred to as acoustic noise and are usually limited to compressional waves (although
some turbulent and acrodynamic disturbances can be important in several situations).
These disturbances are more difficult to control because it is often impossible to change
the mass, stiffness and damping of a gaseous system (especially open air environments).
The third transmission path is liquid, and can be in the form of water, hydraulic fluid, and
oils, to name a few. This transmission path is common for boats, pumps, lubricated bear-
ings, and heat exchangers. The types of disturbances in liquids are similar to those in gas,
with a greater emphasis on turbulent disturbances, and with similar difficulties in control-
ling properties. Since the focus of this thesis is machine enclosures, specifically panels,

the liquid transmission path will not be emphasized.

An important aspect of controlling noise and vibration is understanding how they are
transmitted through various objects, and the mechanisms of coupling between different
objects. Stated another way, it is essential to determine the source of vibration and noise
(even if the exact origin cannot be determined) and how to prevent it from reaching the
area where its presence is detrimental. To do this it is necessary to understand the dynam-
ics of the systems through which the noise and vibration travels, and how to change the
disturbances using enclosures, damping, controls, and principles of design. The following
sections provide brief overviews of the dynamics of the transmission paths of interest, par-

ticularly in relation to panels.

2.2 Structural Vibration

Vibration in structures is simply defined as oscillatory motion about a mean position.
Energy enters the system at the point of excitation and a portion of the energy propagates
through the structure as waves. The waves excite coupled objects, reflect off boundaries,

and dissipate over time (generally the energy is changed to heat by a process referred to as
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damping, which can occur in many different ways). The initial response of systems or the
response of very large systems is dominated by travelling waves. The energy in a finite
system at steady state is dominated by modal vibrations, which can be thought of as stand-

ing waves. The following two sections provide a brief description of these two processes.

2.2.1 Propagation of Waves and Vibration

To ensure a common understanding, some basic concepts must be introduced. The most
common parameter associated with waves and vibration is frequency, denoted here by fto
indicate frequency in Hertz (Hz, cycles per second) and ® to indicate frequency in radians
per second. The frequency relates the temporal occurrence of waves and vibration.
Another important parameter is the wavenumber, denoted here as k. The wavenumber is
the spatial equivalent of frequency, as it essentially relates the wavelength by indicating
the number of waves per unit distance. The wavenumber has the following associated

equations
= = 2.1

where c is the speed of the wave and A is the wavelength. The wavenumber is commonly

used in acoustics and appears sporadically throughout this work.

Waves are most commonly represented by sinusoids (i.e. a wave being no more than a har-
monic variation in time and/or space), but throughout this work the exponential represen-
tation is also used due to its mathematical ease. Often waves are represented by
fn(t) = Asin(wt+ ¢) where A represents the amplitude and ¢ represents the phase. In
many texts, and in this work, it is common to see the wave also denoted as
fn(x, t) = Re{A explj(wt—kx + ¢)]}, where Re indicates the real portion of the equa-
tion, A is the complex amplitude (some number a + jb), and j is the imaginary unit
(square root of negative one). In this representation the change per unit distance is

accounted for with the spatial relation of the wavenumber.
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Structures can be deformed and experience stresses in shear, compression, and in tension
(tension is nearly identical to compression most materials in the linear range of deforma-
tion). The energy of deformation propagates through the structure as vibrational waves
that are a combination of shear waves, compressional waves, and torsional waves
(although torsional waves can be considered another form of shear waves). In most struc-
tures all three types of waves are significant. For plate-like structures, such as panels, the
most significant type of wave or deformation is called a bending wave, which is a combi-
nation of shear and compressional waves. Bending waves are characterized by their
deflection normal to the surface and translational propagation parallel to the surface (in

the case of travelling waves).

In most cases, bending waves in solids are dispersive, meaning they travel different speeds
at different frequencies. This is important when considering coupling to non-dispersive
objects such as fluids. In solids, the speed of a bending wave increases with increased fre-

quency and stiffness, and decreases with increased mass. The bending wave speed for

2
5 = 4B 2.2)

where m is the surface density (i.e. p, h, where p, is the material density and 4 is the

panel structures is given by,

material thickness), ® is the angular frequency of the wave, and B is the bending stiffness
of the panel in the direction of travel of the bending wave. The bending stiffness can be

represented by,

El

= T (2.3)

where E is Young’s modulus (sometimes referred to as flexural modulus), [ is the cross-

sectional second moment of inertia, and v is Poisson’s ratio. [Bies, 1996]
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From the perspective of wave dynamics, which is used throughout this chapter, the propa-
gation of a one-dimensional plane bending wave in an infinite plate is the same as in an
infinite beam. The one exception being that the relationship between longitudinal strains
and stresses must be accounted for, to allow for the lateral constraint that is absent in a

finite width beam. The common beam bending differential equation is thus,

Er a4q _ azq
(I—vDox* o2 @4

where I’ is the second cross-sectional moment of inertia per unit width (i.e. #3/12 for a
uniform plate of thickness #), x is the coordinate direction of the travelling wave, and g is

the transverse displacement at the coordinate x.

Assuming a simple harmonic wave, g(x, f) = Re{A exp[j(wr —kx)]}, the wave equation

can be written as,

Bk* = w’m, (2.5)
where the B represents the bending stiffness per unit width. The general solution to this

differential equation is

g(x, 1) = Cle(j(m —jkx) + Cze(jmt—kx) + C3e(jmt+jkx) + C4e(jmt+kx) , (2.6)

where again k& is the wavenumber (perhaps more conveniently thought of as

k* = mw®/B). The eU®%9) and U0 terms represent the spatial rightward travelling

(o) and U5 terms represent the spatial leftward travelling waves. The

waves and e
¢** and e represent the evanescent waves. The constants, C;, are determined by apply-

ing the boundary conditions and solving.

In the case of two-dimensional bending wave fields, which may propagate in both the x
and y directions simultaneously, a more complex wave equation is required. Derivation of
the complete classical solution is tedious and can be found in references such as Cremer et

al. [Cremer, 1973]. For a thin plate lying in the x-y plane, where the wavelengths of the
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frequencies of interest are an order of magnitude greater than the plate thickness, the bend-

Ing wave equation is

ET a4q a4q a4q _ azq
(1- vz)[ax4 * 28x28y2 * oy4| FT 2.7)

where the above neglects shear and rotary inertia, which for the cases considered is
acceptable. Unfortunately there is, as of yet, no solution to this two-dimensional wave
equation for panels with rectangular boundaries. There are solutions however to circular
plates, but as this work focuses on rectangular panels it provides little insight. The best we
can hope to do is use the one-dimensional version in Equation 2.4, as well as some

approximations based on Equation 2.4, to help gain some insight into the problem.

For more complex systems, such as shells and orthotropic panels, there is even less hope
of finding analytical solutions. However, there are some parameters related to wave prop-
agation that can provide insight about the wave dynamics. The cross-sectional bending

stiffness of a curved or corrugated panel can be estimated by

B = &j:(ﬂ + @dz (2.8)
where again E is the modulus of elasticity, v is Poisson’s ratio, L is a characteristic length
of the panel, and z is the height from the neutral axis to the center of the panel thickness
along the distance ! [Bies, 1996]. Figure 2.1 illustrates these variables in relation to a
generic cross-section. Note that this parameter neglects shear, which is only valid when
the thickness of the panel is much smaller than the characteristic length. This approxima-
tion of the bending stiffness can then be used in Equation 2.2 to estimate the bending wave
speed in corrugated and two-dimensionally curved panels. It should be noted that in cer-
tain cases, especially two-dimensionally curved panels, this approximation over-estimates
the actual bending stiffness. The over estimation is a result of the fact that when a bending

wave propagates through a panel it will not necessarily travel along a straight cross-sec-
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Neutral Axis

-]
- L ™

Figure 2.1 A simple sketch illustrating the variables for calculating the cross-sectional bending stiffness B.

tion, but instead the wave front may conform around obstacles such that the energy

required to deform along the wave front is minimized.

2.2.2 Natural Frequencies and Modes of Vibration

The last section discussed waves without assuming anything about the boundary condi-
tions or what happens when waves encounter obstacles or borders where waves reflect.
This section uses the wave perspective to illustrate a common phenomenon where finite
structures demonstrate a mathematically definable behavior when vibrating. In general,
structures have certain preferred spatial and temporal deformations or modes when
excited. Understanding why these preferred modes occur can be difficult. Typically,
modes and vibration are taught from a mathematical perspective, where the degrees of
freedom are carefully defined, and modal solutions are determined using linear algebra

and eigenfunctions. Often the physicality of the vibration is lost from this perspective.

A modal analysis can also be performed from a wave perspective, and the logic is often
more easily understood, especially for thin members such as beams and panels. As a wave
travels through a medium it is characterized by a sinusoidal change in amplitude, but this
is very different than the non-intuitive shapes often describing modes. One can under-
stand how these shapes arise by looking at boundaries and obstacles comprising the struc-

ture. Take for example a finite beam. Assuming minimal damping, a wave reaching a
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boundary must be reflected because the energy must be conserved. The reflecting wave
then is superimposed upon the initial wave, creating an interference pattern. Some of
these interference patterns are destructive and some are constructive. The interference
patterns create standing waves and these standing waves result in mode shapes. Assuming
a homogenous material, the geometry and mass of the structure or beam determines the
shape and frequencies at which the standing wave patterns are created. From a spatial
wave perspective on a beam, the standing wave or mode is formed when the wavenumber
or wavelength coincides with the length of the beam. For a simply supported beam this
would mean that the nodes (stationary parts of the standing wave) coincide with the mean
harmonic values and the supports of the beam. From a temporal perspective this would
theoretically occur at an infinite number of frequencies, where the wavelengths become
successively smaller. These are the natural frequencies of the beam and their associated
shapes are the mode shapes. The same is essentially true for more complex structures like
panels, but the standing wave patterns can be highly complex, especially with two-dimen-

sional wave interference.

Resonance of a structure occurs when the structure is excited near or at its natural fre-
quency. This does not mean that modes cannot be excited at off resonant frequencies; it
merely means that the response is greatest when excited at or near their natural frequency.
The lowest natural frequency is often very important and is referred to as the fundamental
frequency. There is a similar phenomenon to resonance that is often overlooked. If a
structure is excited by a set of forces and these forces are spatially distributed to match
with the standing wave pattern and occur at the same wave speed, then the structure’s
response is greater, regardless of the frequency. This phenomenon is generally referred to
as coincidence, and the lowest frequency at which coincidence can occur is referred to as
the critical frequency. Coincidence is discussed in greater detail in Section 2.4 [Fahy,

1985].

Vibration is often characterized by a superposition of preferred modes. Each mode will

vibrate most strongly when it is excited at its resonant frequency. In complex structures,
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such as machines, the structure as a whole has its own resonant frequencies and modes of
vibration. The components of the structure, such as panels, vibrate with the structure at
the entire structure’s resonant frequencies. Each component influences the entire struc-
ture’s resonant behavior, and depending on the degree of coupling and boundary condi-
tions between the component and structure, the individual component’s resonant behavior
and modes may be significant and apparent in the overall dynamics. If a component is
weakly coupled to the structure, or its boundary conditions can be categorized nearly as
fixed, then the components individual behavior may be apparent. In other words, the com-
ponent’s behavior within the structure is more likely to resemble its individual behavior as
if it were mounted with idealized boundary conditions. These are sometimes referred to as

“local modes”.

In the case of panels on machine enclosures, the panel’s boundary conditions are often
nearly rigid. Although they cannot be categorized as simply supported or clamped
because their boundaries are compliant, their behavior often resembles an approximate
combination of the two. For a first approximation it is reasonable to consider the bound-
aries either simply supported or clamped. For the case of a simply supported panel (sim-
ply supported on all sides and rectangular in shape) the natural frequencies can be

estimated by,

_ 7 [B]i? n? :
f;.,n = E}\/’;l[‘? +b—2:| (HZ) I,n= 1,2,3,... (2.9)

where again m is the surface density, B is the bending stiffness of the panel, a and b are the
length and width of the panel, and i and r correspond to the number of nodal lines plus one
in the a and b directions, or likewise the number of flexural half-waves in a particular
direction. The lowest frequency mode corresponds to i = n = 1. The lower order mode

shapes of a simply supported panel can be represented by the formula,

2(%,¥);, = sin(%x) . sin(%y) (2.10)
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where z indicates the transverse deformation of the plate normal to the surface. The
amplitude of the shape is arbitrary and meaningless as mode shapes do not have associated
amplitudes. The simply supported boundary conditions allow for a nearly exact solution
to be found, as in Equation 2.10, but in general an approximation is made using solutions

of a series of beam modes and the Rayleigh-Ritz procedure.

For a clamped panel the natural frequencies can be approximated by,

fin = gﬁ[MJr((Pn)z} @.11)

m| g2 b2

where o and @ are tabulated constants that are dependent on the mode order and have
been experimentally determined [Blevins, 1995]. The lower order mode shapes for a

clamped panel can be approximated by the formula,

m;, = (sin(%ix) . sin(’%y))y (2.12)

where the coefficient y was determined to be a value between 1.4 and 1.6 for lower order
modes. This model for clamped panels was determined and verified using finite element

analysis.

In most cases the actual panel dynamics are more nearly approximated by boundary con-
ditions that lie somewhere between the values given by the clamped and simply supported
conditions. This can be loosely approximated by choosing a value of y that lies between
1.0 and 1.4, depending on whether the boundary conditions appear to resemble a clamped
or simply supported condition. In addition, most actual panel boundary conditions incor-
porate some form of fastening and the boundaries are compliant rather than rigid. These
differences between reality and the above analytical models lead to a certain degree of
inaccuracy when determining the vibration characteristics of flat panels, but for a first
order estimate the above models provide a quick and simple result with which to analyze

designs.
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Again, unfortunately, extreme difficulty is encountered when trying to analytically esti-
mate the natural frequencies and mode shapes of two-dimensionally curved panels. Some
progress has been made for simple curvature such as cylinders or spherical shells, but little
of this complex analysis is applicable to many of the shapes contained herein. There are
some models for orthotropic and corrugated (one-dimensionally curved panels) that may
provide some additional insight. The natural frequencies of an orthotropic plate can be

estimated by

1/2

T Ji[(Bai)4 .\ (B,V +B,v + Gh3/3)i’n? .\ (an)‘j 2.13)

Jin = 3\m| o 2a%p? b*

gl

where G = E/(2(1 +v)) is the material modulus of rigidity, B, and B,, are the respec-
tive bending stiffnesses (as calculated in Equation 2.8) in the directions corresponding
with the sides indicated by the lengths a and b [Hearmon, 1959]. This formula can pro-

vide slightly better estimate of two-dimensionally curved panels.

In general, the analytic models presented above give inaccurate estimates for two-dimen-
sionally curved panels. They provide an order of magnitude estimate for the lower fre-
quencies, but cannot be trusted to provide any information at higher frequencies. To best
analyze two-dimensionally curved designs it is more reasonable to rely on numerical anal-
ysis. When possible, this work relies on finite element analysis to provide structural and
dynamic information about the designs. This work does not address the details associated
with the development of the finite element calculations as these are not central to the work

here and can be found in a number of other sources.

2.3 Acoustics

Acoustics are an often misunderstood phenomenon. The information here is meant to pro-
vide a basic understanding of the concepts used in this thesis and to minimize confusion.
Again, a wave perspective is used as the primary method to describe the dynamics of

acoustic mediums.
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2.3.1 Acoustic Fundamentals

Sound is perception based. This means that it is dependent on how the human body senses
and translates input from the environment. Unfortunately this leads to confusion because
the scientific explanation of sound does not coincide well with how humans perceivé
sound. This section and the next describe sound from a scientific point of view, but to

help clarify, Section 2.3.3 discusses how the scientific aspects relate to perceived sound.

Sound is merely compressional waves that propagate through a fluid, air for the purposes
of this work, at a speed characteristic of that fluid (although it should be noted that shear
waves can also be present in viscous fluids). In this sense, sound waves are very similar to
longitudinal waves in structures. In general, sound waves in fluids are non-dispersive,
meaning that they travel at the same speed regardless of frequency. The speed of the com-

pressional wave in a fluid can be determined by

c f' - JE (2.14)

where B represents the bulk modulus and p is the fluid density. At standard temperature

and pressure the speed of sound in air is approximately 344 m/sec.

Pressure disturbances lead directly to the formation of sound waves. As a result, sound
waves are often described by pressure waves. One-dimensional, or plane, sound waves
are sometimes represented by p(¢) = Psin(w? + ¢) where p(t) is the pressure as a func-
tion of time, P represents the pressure amplitude and ¢ represents the phase. It is some-
times simpler to denote p(x,f) = Re{Pexp[j(®wt—kx+¢)]}, where Re indicates the
real portion of the equation, and P is the complex pressure amplitude. Again, the change

per unit distance is accounted for with the spatial relation of the wavenumber.

To illustrate some other basics of acoustics, consider a spherical sound pressure wave
propagating outward from a source of amplitude P, generated from the surface of a

sphere of radius R. Assuming no reflections (i.e. free field) the pressure is represented by
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RP
p(r,t) = Re{Tsexp[i(u)t— k(r—R)) + ¢]} (2.15)

where 7 is the distance from the sphere to the point of the pressure measurement. This
equation illustrates that the pressure amplitude, RP /r, decreases with distance from the
point source. This phenomenon is more readily apparent in the far field”. In the far field
sound waves are freely propagating, meaning the fluid particle velocity and wave propa-
gation are in the same direction and their maxima and minima coincide. In the far field the

pressure and particle velocity can be related by

Py = ‘Zg g | | (2.16)

where p is the fluid medium density, cris the speed of sound waves, and u is the particle
velocity. This value is often referred to as the characteristic impedance of the fluid
medium. Note that the characteristic impedance is also valid for plane waves in the far

field where the term r can be replaced by x in Equation 2.16.

An important quantity in acoustics is the intensity of a sound wave. The intensity relates
the average acoustic power passing through a unit area of the medium perpendicular to the
direction of sound propagation. In structural systems, power is the product of force times
velocity. The power couple in fluids is the product of pressure and flow rate, but for pur-
pose of acoustic intensity the important parameters are pressure and particle velocity
(multiplying particle velocity by the unit area provides flow rate). Intensity is mathemati-

cally described by,

- %j;p(r, 1) - u(r, tdt, 2.17)

* Far field can be defined as a distance where K272 >> 1 and r >> R, where R can be generically thought of
the characteristic length of the source (i.e. length of a panel).
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where YT denotes the intensity and T signifies the time interval of integration. Substituting

in Equation 2.16 we get

T2 ;
= Dy (2.18)
Ty pes

A more common form of relating acoustic pressure is the root mean square (RMS) of the

pressure. The RMS pressure is the value that most common sound meters provide and can

1 T
Pins = ;f p(r, t)dt. (2.19)
0

Now the intensity can be described by

be calculated by

2
_ Prms

T = . 2.20
oe. (2.20)

It should be noted that for a point source and the resulting spherical waves the intensity of
sound pressure follows the inverse square law. In other words, the intensity is inversely
proportional to the square of the distance from the point source. This is opposed to the

pressure which is only inversely proportional to the distance.

It is important to understand how multiple sound sources add at a point different from the
sources. Both the RMS pressure and the intensity combine in the same way. In general,

for an incoherent field the pressure can be summed as follows
Pioal = PT+P3+P3+...+p; @.21)

where p; represent the sound pressure sources measured at a single point and the RMS
value for pressure is assumed (as is the case from this point forward). For incoherent

waves the intensity formulation is similar
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2
p
Yot = Y+ Yo+ Vo4 4, = g’;“l. (2.22)

For tonal sources of nearly the same frequency (coherent field), the phase of the sources
must be accounted for so that the superposition of waves is considered. For this calcula-
tion for tonal sources the reader is referred to the literature [Lord, 1987]. The acoustic
power of the source can be determined by multiplying the intensity by an area surrounding

the source.

Another fundamental acoustic concept is the decibel. The acoustic decibel is a unit of
measurement based on the RMS sound pressure that scales logarithmically. The important
aspect of using the decibel as a unit of measurement is that it more accurately coincides
with the human sense of acoustic volume. Like most human senses, what appears like a
linear change to the human senses is more nearly a logarithmic change in terms of measur-
able quantities. As aresult, the decibel is a practical unit of measurement that adds a bit of

confusion when performing calculations.

In addition, it is also important to have a reference measurement. This is necessary
because there is a minimum quantity that humans can perceive. In the case of the decibel,
the quantity can be described in terms of pressure, intensity, and power. The decibel mea-

surement of acoustic volume can be measured by the following formulations

SL, = Sound-power Level = lOloglo( Wpre) (2.23)
. . Y
SL; = Sound-intensity Level = 10log ( ) 2.24)
1o\ Y,,
P\’ p
SLP = Sound-pressure Level = 1010g10( ) = 20log 0( ) (2.25)

re re

where SL denotes the “sound level” (in the case of pressure it is often referred to as sound

pressure level, SPL), p,,.is 2x 1075 N/m?, Y, is 1x 10712 W/m?, g is the power



52 VIBRATION AND ACOUSTICS BACKGROUND

level and 8 yer 18 1% 10-12 W. The reference values are the minimum values that the
average human ear can perceive at a 1000 Hz. This is sometimes referred to as the A-
weighted sound level. The “A” indicates that this standard is recommended by the Amer-
ican National Standards Institute (ANSI). The square of the pressure is required to form

the “power” relationship as indicated in Equation 2.22 [Lord, 1987].

Unfortunately, using the decibel unit of measurement can be confusing when separate
sources require addition or subtraction. Because the decibel unit is on a logarithmic scale
it cannot be simply added or subtracted. First, the quantity must be converted to either the
power, intensity, or pressure squared, based on the reference quantity. After the quantity is

converted, then the values can be added or subtracted as necessary.

2.3.2 Acoustic Waves

Like structures, fluid dynamics can be described in terms of waves. Waves in low viscos-
ity fluids are primarily compressional waves. The wave equation can be derived from the

linearized form of the continuity equation

ap du  dv  ow\ _
< +p(§;+$+-a—z) -0, (2.26)

and the momentum equations

%mg‘; =0 (2.27)
g—f;-+pg‘;=0

dp , dw _

a—z+pm =0

where u, v, and w are the particle velocities in the x, y, and z direction respectively, and p

implies the mean density of the fluid. An adiabatic process is assumed.
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From these two sets of equations the wave equation governing small perturbations about

the equilibrium can be derived

op 0P 3P _ 19D

= 2.28
0x2  dy2 072 c}aﬂ’ (228)

where p is the perturbation or “acoustic pressure” about the equilibrium pressure; cis the
speed of sound from Equation 2.14; and the fluid is assumed to be inviscid, homogeneous

and compressible.

Assuming the simple harmonic time dependence discussed in Section 2.3.1, and consider-
ing only the two-dimensional form (useful for fluid structure interaction), a general two-

dimensional solution to Equation 2.28 can be expressed as

azp azp_ o2 o
s e L @2)

The propagation of a plane wave in two-dimensions can be expressed as

p(x,y,1) = p-exp[-jk, —jk,Jexp[jot], (2.30)

where k, and k, indicate the wavenumber in the respective directions. The directional
wavenumbers are not independent. Substitution of Equation 2.30 into Equation 2.29

yields the following wavenumber relation
k? = k2 +ky2. 231D

This demonstrates that only specific combinations of directional wavenumbers can satisfy

the wave equation at any particular frequency [Fahy, 1985].

2.3.3 Perception of Noise

Knowledge of how noise is perceived is also an important aspect of effectively minimiz-

ing noise. It is important to recognize that what may scientifically or numerically appear
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TABLE 2.1 Examples of sound sources and their approximate levels at close distances (i.e. 5 to 10 feet)
[Lord, 1987].

Sound Power Sound
Source of Noise Level (dB) Power (W) Pressure (Pa)
Ram jet with afterburner 180 1,000,000 20,000
Near commercial jet engine 140 100 200
Rock concert 120 1 20
Car horn at 10 feet 100 0.01 2
Curb-side of busy street 80 0.0001 0.2
Inside a department store 60 0.000001 0.02
Radio at low volume 40 0.00000001 0.002
Whisper 20 0.0000000001 0.0002
Normal threshold of hearing 0 0.000000000001 0.00002

quieter may not seem quieter to the human ear. A noise mitigation solution may appear to
be effective in a lab or on a graph, but in application the solution can be ineffective due to

how the noise is perceived.

As mentioned in Section 2.3.1, human perception of noise and acoustic volume is more
conveniently suited to a logarithmic scale. Table 2.1 is used to help demonstrate the vari-
ous relationships between pressure, decibels, and power for some common sound sources.
The decibel scale is not only more compatible with the human senses, but it is easier to
manage as the numbers are of a limited range that correspond to many other measure-

ments commonly used (i.e. temperature, length, and time scales).

One importaﬁt aspect of noise control is recognizing what the human ear can discern. In
general, the human ear cannot distinguish acoustic volume differences of 3 decibels or
less. Therefore, to have an effective solution the change in decibel levels should be at
least 5 decibels. This is not an absolute rule. The human ear is more sensitive at certain
frequencies ranges than others. In general, the human ear can sense noise ranging from 50
Hz to 20,000 Hz. These values may vary from person to person. At the lower frequen-

cies, the sound is often described as “felt” more than heard. The human ear is most sensi-
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tive in the frequency range from 1,000 Hz to 10,000 Hz. Not surprisingly, this is the
frequency range of most human voices. It is also the frequency range where noise control

solutions must be most effective.

In addition to the above general rules on ear sensitivity, an important aspect of noise con-
trol is psychological acoustics. Much in the same way that a surface may feel unpleasant
to the touch or a color hard on the eye, certain types of sounds are more annoying than oth-
ers. Often, this phenomenon cannot be explained or predicted using numerically based
rules. What may appear to be a good solution numerically, even considering the ear’s sen-
sitivity range, may actually turn out to be considered worse merely becaﬁse the noise is

“less pleasant” even though it is numerically quieter.

There are several standards and theories that describe various aspects of noise perception.
It is not the goal of this section to review all these methods, rather the purpose is to make
the reader aware of these issues so that accurate judgements of noise control performance
can be made. For more detailed information concerning these issues the reader is referred

to the literature [Lord, 1987; Kryter, 1970].

2.4 Structural-acoustic Coupling

To effectively mitigate both acoustic noise and vibration it is critical to understand the
coupling process between structures and fluids. Vibration problems are often exaggerated
by the influence of impinging acoustic waves, and vice-versa. Acoustic noise is prevalent
where large surfaces vibrate. Unwanted sound can escape machine enclosures when the
radiation and transmission loss characteristics of the enclosure panel are not properly con-

sidered. All these issues pivot on the physics of structural-acoustic coupling.

The difference between structural to acoustic coupling and acoustic-to-structure coupling
is only in the direction of energy travel. The processes and dynamics that occur are essen-
tially the same, and can be proven through the principle of reciprocity [Fahy, 1985; Smith,

1965]. To simplify the discussion, the topic of structural-acoustic coupling is described
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primarily from the perspective of structure to acoustic coupling, but the reader should be

aware that the principles are the same in reverse.

In machines, it is common to have quiet mechanisms that vibrate at frequencies outside
the range of human perception*. These mechanisms are then attached to other compo-
nents that may not be directly related to the function of the machine, such as aesthetic and
enclosure components, but these components may couple and vibrate at frequencies that
are within the range of human perception. To ensure quiet machines it is important to
understand this phenomenon and how these structures couple to the acoustic medium. In

this section the focus is on panel-like structures coupling to air.

An important concept to understand is how a vibrating structure causes an audible acous-
tic disturbance. In general, the mechanism of structure to acoustic coupling occurs when
the surface of a structure vibrates so that it causes the acceleration of fluid particles near
the structure, resulting in a density change in the fluid. The effectiveness of the coupling
depends upon the amplitude of the acceleration and throw, as well as the spatial distribu-
tion of the acceleration. A fluid can accommodate a certain amount of acceleration and
still behave incompressibly. When the acceleration is significant enough the fluid com-
presses locally, and if the acceleration is over a broad area then the density change propa-
gates through the fluid and causes significant far-field disturbances. To properly

understand the process, both spatial and temporal factors must be considered.

To demonstrate the process, simple models can be used both as illustrations of the phe-
nomenon and as building blocks for more complex models. One such model is a volume
displacement source, most often a sphere. The time variant pressure at a distance r from a

radial pulsating sphere of radius a has been estimated [Kinsler, 1982] by

0pL Gle R 2.32
p(r 1) 1 +jkR 4mr (2.32)

* Humans can perceive sound ranging from approximately 50 to 15,000 Hz, although the range can vary
from person to person.
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where p again implies the mean fluid density, ® is the pulsation frequency, and Q is the
volume flow rate of the fluid. The flow rate is important for several reasons. One, when
multiplied with the collocated pressure it relates the power. In addition, the flow rate is
the velocity flux of fluid through an area. As previously mentioned, the velocity is often
used to describe acoustic fields. Also, if one considers the time rate of change of the flow
rate, dQ/dt, then this directly relates to the particle acceleration discussed previously,
and strongly influences the nature and degree of coupling. If the displacement of the nor-

mal to the sphere is described by g = ée’ ®’ then the flow rate is described by
Q = jodma3q. (2.33)

One half of a spherical source can represent a point on a surface, and thus an elemental
source of structural-acoustic coupling to form sound. For sources that are much smaller
than the acoustic wavelengths considered (i.e. ka << 1) the pressure equation can be sim-

plified to

J(Der(j[(D!—kr]) . (234)

p(r,t) = Ay

It is often helpful to write the pressure in terms of the normal velocity, vy, = vne o

2jwpvydS HUlwr=kr)

4nr (2.35)

p(r, 1) =
where Q has been replaced by the equivalent 2vy8S and 3S is the elemental surface area.
Note that the above form is only applicable at distances much greater than the dimension
of source features or in the case of vanishingly small sources, as is the case when integrat-
ing over a surface. Thus, the equation can be applied to planar surfaces by integration.
This was first performed in the late nineteenth century by the physicist Rayleigh,

jop jor J‘;’N(;—s)e_j “ 1

2.36
7l - (2:36)

p(r,t) =
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where r is the position vector of the receiving or sensing point, 7, is the position vector of

the vibrating surface with velocity vx(r,), and ¢ is the magnitude of the vector r — r.

The application of the above formula to panel like structures can provide a good approxi-
mation of the acoustic field created by panels. The difficulty is encountered when one
tries to determine the velocity distribution for panels of various geometries and boundary
conditions. Analytic solutions are only available for the simplest of conditions. Pressure
from a simply supported flat panel can be estimated because the normal velocity distribu-

tion can be represented
TN Y) = Via- sin(%‘) : sin(’%y) (2.37)

where i and n relate the number of nodal lines in the x and y direction, and a and b repre-
sent the lengths of the panel (by which x and y are bounded). Combining this with Equa-
tion 2.36 the pressure created by a particular mode at an arbitrary point and frequency can

be represented by

. (ITx\ . (nmy) o

p(xpa )’p, Zp’ t) = T dxdy (238)

00 S

where Xp» Yps Zp represent the position of the point of measurement, and ¢ is the distance

to the point.

Since much of the above analysis is only applicable for simple systems, it is difficult to
measure its worth for the complicated systems of this work. The above analysis provides
essential information about how structures and fluids couple, but it is unlikely that it can
provide accurate information about two-dimensionally curved systems. For this reason
the detailed quantitative analysis ends here and the reader is referred to the sources Fahy
[Fahy, 1985] and Wallace [Wallace, 1972]. Although the above cannot provide exact solu-
tions, it can provide understanding that can lead to a more qualitative understanding and

ability to predict the dynamics of structural acoustic coupling. The next two sections use
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the above information as building blocks to describe qualitatively some of the more

important aspects of structural-acoustic coupling.

2.4.1 Radiation

An important factor for a panel design is understanding how, and how well a design radi-
ates sound. Sound radiation of panels is largely a factor of the modal dynamics of the
panel. The shape of the modes and the wavenumbers can determine how well a panel
radiates sound. This is especially true when the panels are structurally excited. To under-

stand this phenomenon it is helpful to look at some mode shapes.

Figure 2.2 illustrates six different mode shapes of a flat panel. Each mode illustrates a dif-
ferent type of radiating mode. As a first approximation, the efficiency with which a panel
mode radiates is dependent upon whether the mode shape has an equal number of positive
and negative lobes. Lobes are either the peaks or the troughs of the mode shape above or
below the neutral axis and are separated by nodal lines. The first mode (Figure 2.2a) gen-
erally is the most efficient at radiating noise, because there is no other lobe to cancel the
volume of air it moves, and as such can be thought of as a monopole noise source. The
second mode (Figure 2.2b) is an example of a mode where the two lobes cancel out the
volume of air that they move and as a result there is less far-field radiation of noise. The
second mode can be thought of as a dipole source with the sources 180 degrees out of
phase. The fourth mode, for the configuration shown, (Figure 2.2c) is also usually an
effective radiator. Although there is some cancellation, a significant area is not cancelled
(i.e. a single lobe). In general, modes with an even number of lobes are referred to as even
modes, and modes with an odd number of lobes are referred to as odd modes, with the odd

modes often being more efficient noise radiators.

Higher-order modes for flat panels, as those shown in Figure 2.2d-f, demonstrate some of
the same behavior as the lower order modes but the radiation behavior is a bit more com-
plex and requires a higher level of analysis. For higher order modes the majority of radia-

tion comes from the edges and corners of a the panel. To understand this it is necessary to
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(a) Fundamental Mode (b) First Even Mode

Figure 2.2 Illustrations of several mode shapes for a flat rectangular panel. The size and quantity of arrows
qualitatively illustrate the radiating efficiency of the mode, and the radiation portion of the panel.

introduce the concept of the radiation index, and to examine its relationship to the critical

frequency and the wavenumber.

As a measure of a panel’s ability to radiate, a radiation index is defined (also referred to as
radiation efficiency and radiation resistance). The radiation index is the ratio of a panel’s
radiated power to the power radiated by a baffled piston (assumed to be infinitely stiff) of

the same area and at the same velocity. It can be represented by
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@panel _ sopanel (2 39)

c =

B gopiston pcfS(v_,%)

where panel is the power radiated by the panel, @ is the power radiated by an ide-

piston
alized baffled piston, S is the surface area of the panel, and (v2) is the average mean

square velocity of the panel. The average mean square velocity can be calculated by
—_ 1 1 T
2y — |2 42
(2 = sf[r | REER t)dtj|dS (2.40)
S

where T is some measure of time, and again v, is the normal velocity of a point on the
panel. The radiation index is useful in comparing the ability of a panel to radiate noise and
is referred to further in this section and again in the experimental results in Chapter 6. In
general, the radiation index is less than unity below the critical frequency and near unity

above the critical frequency.

Earlier, the critical frequency was introduced as the spatial equivalent to the natural funda-
mental frequency; it is also the frequency at which the speed of the bending wave in the
material is equal to the speed of the compressional wave in air (speed of sound in air) and
is represented as

2
= m 2

_< (2.41)

fc_2n B  2m

where cyis the speed of sound in air. Likewise, it is the frequency at which the structural
and acoustic wavenumbers are equal. The critical frequency is important because it indi-
cates frequencies where the panel couples well with the surrounding air, regardless of the
modal distribution of the panel. In physical terms, at the critical frequency the wavelength
in the panel bending wave is equal to the trace wavelength at a grazing incidence, and cou-

pling between the structure and acoustic medium is strong [Bies, 1996].
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At this point one must be careful in distinguishing between structural and acoustic wave-

numbers. From this point forward structural wavenumbers are subscripted with the letter

b and acoustic wavenumbers are not subscripted. As in the case of acoustic two-dimen-

sional wavenumbers (as in Equation 2.31) orthogonal structural wavenumbers can be
summed in the following manner

k2= k2 4R, = [ 2

b = Kpy T by = N B (2.42)

where k, is the free structural wavenumber. The primary wavenumber values can be

determined for each directional by

(2.43)

Recall that 7 and r indicate the number of lobes in the x and y direction respectively, and a

and b represent the panel lengths in the respective directions.

Since above the critical frequency the radiation index can be assumed to be nearly unity,
one must focus on what happens below the critical frequency. Three distinct regimes are
apparent below the critical frequency, each corresponding to a different combination of
wavenumber configurations. The first corresponds to k> k,,, k < ky, and is referred to as
an edge radiating mode, with the edges parallel to the x axis being the primary source of
radiation. The second corresponds to k <k, , k> ky, and is also referred to as an edge
radiating mode, with the edges parallel to the y axis being the primary source of radiation.
The third regime corresponds to k <k, k< k,, and is generally referred to as a corner
radiating mode because the corners are the primary sources of radiation. Figure 2.2d
through Figure 2.2f provide examples of these mode shapes and their radiating portions.
The above provides an introduction to some of the principles of radiation. For a more
thorough treatment of the subject the reader is referred to Fahy [Fahy, 1985], and Smith

and Lyon [Smith, 1965], from which the above is primarily based.
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2.4.2 Transmission

Transmission of noise is an extension of the radiation phenomenon. In the above section it
is assumed that the source of excitation is a structural disturbance. As such the primary
source of noise is based largely on the modal dynamics (a fact that becomes important
when the discussion of damping arises in a following section). Transmission of noise is
essentially noise radiation that occurs due to the acoustic excitation of the panel. The
acoustic excitation of the panel increases the complexity of the problem because non-
modal dynamics become more significant, and as a result the radiation efficiency also

increases.

In a more strict sense transmission is the relation of incident sound power to the transmit-
ted sound power. In general, a transmission coefficient is defined to characterize the trans-
mission loss properties of a partition. The transmission coefficient is the ratio of
transmitted to incident power and is represented as
p .

T, = transmitted (2.44)
© incident
where T is the transmission coefficient, and again g is the power. The transmission loss

is often used to describe the characteristics of a panel and is defined by

TL = —10log(t,). (2.45)

Several predictive methods exist for determining the transmission loss analytically [Fahy,
1985; Cremer, 1973; Hearmon, 1959], but generally their application is restrictive and the
results are far from accurate for non-flat structures. Therefore, transmission is treated in a
more qualitative sense in this work, the goal being to understand how design changes may

influence transmission.

Four significant frequency regions are evident when analyzing transmission through pan-
els, assuming diffuse and broadband excitation. The first region is the frequency range

below the fundamental frequency of the panel. In this region the transmission of sound is
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primarily controlled by the stiffness of the panel, and is often referred to as the stiffness
controlled region. In this region, the stiffer the panel, the lower the transmission coeffi-
cient, Tr. An analogy for this behavior can be made with a mass-spring model. Below
the fundamental frequency of the spring-mass system, the displacement and velocity of
the motion of the mass for a given force is primarily dependent upon the stiffness of the

spring.

The second significant region is the narrowly banded frequency near the fundamental fre-
quency. usually, this region is where the transmission coefficient is at a maximum. For
the spring-mass analogy this corresponds to the resonance of the model where the
response is theoretically infinite (damping of a real system keeps the response bounded).
As implied this region is a function of both the mass and stiffness (as these two factors
determine the resonant frequency, @ = *\/ré)' In addition, sometimes stmgtural modes
near the fundamental mode may also contribute to this region. Since it is controlled by the
modal dynamics of the panel, the degree of transmission loss can be controlled to a limited

extent by the damping of the panel.

The third region of interest lies between the fundamental frequency and the first critical
frequency (first critical frequency is used here to imply that for non-homogeneous panels
multiple critical frequencies are evident depending on the direction of incidence). This
region is often referred to as the mass-law or inertia controlled region. In reference to the
spring-mass model] this is the region above the natural frequency where the displacement
and velocity of the mass for a given force is highly dependent upon the amount of mass.
This region often dominates the transmission properties of many barriers and panels for
audible frequency ranges and is why, as a general rule, many transmission barriers seek to
maximize mass. In this region there are often several higher order resonant modes, but
these modes generally do not contribute as significantly as the fundamental mode and are
minimal compared with the mass control of the transmission behavior. As a general rule
the transmission loss in this region approximately increases at a rate of 6 decibels per

decade above the fundamental frequency.
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Figure 2.3 Illustration of the coincident phenomenon. If A represents the acoustic wavelength, A is the
structural wavelength, and 6 is the angle of incidence, then coincidence occurs wheni, = A - sin@.

The final region of transmission loss is referred to as the coincident region. This is the fre-
quency range at and above the first critical frequency of the panel. The critical frequency
can be thought of as the spatial equivalent of the fundamental frequency, as it is the lowest
frequency where spatial separation (i.e. wavelength) of structural waves corresponds with
the spatial separation of acoustic waves (as opposed to temporal matching during reso-
nance). The critical frequency occurs at grazing incidence. Due to this, a great deal of
structural acoustic coupling occurs at the critical frequency and leads to a decrease in
transmission loss. Above the critical frequency there is a phenomenon known as coinci-
dence between the acoustic and structural waves. Coincidence is the spatial equivalent of
higher order modes and is especially important in diffuse sound environments. Coinci-
dence is the alignment of structural and acoustic waves at angles of incidence smaller than
grazing incidence. Figure 2.3 illustrate the coincidence phenomenon. Coincidence can
occur at any frequency above the critical frequency because there is always an incident
angle for which the structural and acoustic wavelengths align. In general, from the dip in
the transmission loss at the critical frequency, the transmission loss increases asymptoti-
cally up to an extension of the mass controlled region at an average of 9 decibels per

decade.
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Figure 2.4 Illustration of transmission loss for four generic panels.

IMlustrations of several generic transmission loss curves are depicted in Figure 2.4. It
should be noted that these curves are a general representation and may not accurately
depict panels in a variety of settings. Some factors that may affect the transmission loss
response are size of enclosure, inclusion of absorption material, proximity of noise source
to panel, and geometry of panel, to name a few. One of the more important issues in rela-
tion to this work is the effect of an orthotropic panel design. Orthotropic panels, panels
that have different bending stiffness depending on the orientation of the panel, are gener-
ally undesirable for transmission loss applications. The reason for this is that the different
stiffnesses lead to multiple critical frequencies, depending on the orientation of the inci-
dent waves to the panel. In addition, the stiffening of the panel also leads to a reduction in
the frequency at which coincidence can occur. Figure 2.4 illustrates a simplified represen-
tation of this for the line labeled orthotropic panel. This fact is considered when the panel

designs of later chapters are evaluated.
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Figure 2.5 Figure illustrating the negative acoustic effect that discrete reinforcements can have on a panel
design. Illustration on left shows undeformed reinforced panel. Ilustration on right shows possible mode
that would have undesirable acoustic radiation properties.

Again this is a cursory introduction to transmission and the reader is referred to Fahy
[Fahy, 1985], and Smith and Lyon [Smith, 1965], among others [Cremer, 1973; Hearmon,

1959] for greater detail of the dynamics.

2.4.3 Notes on Stiffened Panels

Since a goal of this research is to limit vibration while minimizing the increase in acoustic
noise through stiffening with two-dimensionally curved designs it is important to point out
some of the factors that must be considered when discussing stiffened panels. While stiff-
ening panels often helps to reduce vibration, it can be harmful when considering the
effects on acoustic behavior. From a transmission point of view, while the fundamental
frequency is increased the critical frequency is reduced. In addition, panels are most often
stiffened by adding reinforcing ribs or other one-dimensional members. This leads to an
orthotropic panel that will tend to demonstrate stronger coincident coupling because mul-
tiple critical frequencies are possible due to the varying panel stiffness. These factors can
lead to more effective coupling between the panel and the air and greater transmission of
sound [Bies, 1996]. From a radiation point of view, the ribs and cross members typically
used to stiffen a panel often end up dividing a larger panel into numerous smaller panels
that can radiate more efficiently than the unstiffened panel [Maidanik, 1962]. An example
of this is illustrated in Figure 2.5 These issues were considered when the panels discussed

in later chapters are designed.
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2.4.4 Notes on Impedance

Impedance, in the most general terms, is the inhérent ability of a system to accept and pass
energy. A system with high impedance can have both positive and negative connotations.
In most systems merely a high or low value for impedance is not enough to describe the
transfer of energy. Most often a particular value (rather than a high or low value) for
impedance is most effective at transferring energy; this is referred to as impedance match-

ing.

To gain a better understanding it is helpful to think about a simple one-degree of freedom
system with a spring, mass, and damper. Below the resonant frequency of the system, the
stiffness is the most important aspect of a system’s impedance. To best transfer energy
from a second system to the one-degree of freedom system, it is best if the second system
has equivalent stiffness, thereby maximizing the efficiency of the energy transfer. Above
the resonant frequency of the one-degree of freedom system, the mass is the dominant fac-
tor in determining the impedance characteristics of the system, with greater mass gener- .
ally leading to greater impedance. At resonance, the impedance of the system is
dependent on both the mass and stiffness, but the outcome or transfer of the energy is -
highly dependent on the system’s damping. One should notice that this closely parallels

the discussion of sound transmission in the previous section.

There are several forms and mathematical definitions for impedance, and although this
work tries to discuss behavior in terms of the mechanics of systems rather than the gener-
alized impedance version, it is helpful to have an introduction to the terms. Mechanical
impedance is the ratio of a force to the resulting velocity. This is commonly used to
describe structural systems and is useful when discerning the radiation characteristics of a
panel, as such it is sometimes referred to as radiation impedance. Specific acoustic
impedance, sometimes referred to as characteristic acoustic impedance, is the ratio of
acoustic pressure to the resulting particle velocity. It is useful in gauging the ability of
fluid to propagate sound, and was introduced in Equation 2.16. A third type of impedance

is acoustic impedance, which is also dependent upon pressure and particle velocity, but
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also associates the acoustic wavelength and the fluid channel cross-section. This is often

used when discussing mufflers and ducts. [Bies, 1996]

For further information on impedance, the reader is directed to the text by Bies and

Hansen [Bies, 1996].

2.5 Sound Absorption and Mechanical Damping

First, it is important to make the distinction between acoustic absorption and mechanical
damping. Acoustic absorption is the attenuation of sound waves through the use of
porous, fibrous and foam-like materials whereby the acoustic energy is either acoustically
cancelled or converted to mechanical energy and dissipated. Common absorption materi-
als are mufflers, loose fiber glass, and open-cell foams. As a general rule the frequencies
at which absorption material is effective is inversely proportional to the thickness of the
material, and the acoustic material thickness should be greater than one quarter of the min-

imum acoustic wavelength of interest. This can lead to prohibitively thick layers.

Damping, unlike absorption, is the attenuation of mechanical energy. The incorporation
of damping material is an effective measure for reducing vibration. Damping can also be
beneficial for reducing acoustic noise, but the effectiveness is highly dependent upon the
source of excitation. Damping of panels usually requires much thinner layers of visco-
elastic materials that repeatedly deform visco-elastically (or flow with high viscosity) to
convert the mechanical energy into heat. The effectiveness of the damping material is less
a function of thickness and more a function of the degree and type of deformation the

damping material undergoes. This work does not utilize or address acoustic absorption.

Several different methods of damping can be applied to panels: visco-elastic damping
applied to the surface; isolation mounting applied to the boundaries and points of attach-
ment; and constrained layer damping applied between two or more layers of material.
Each method demonstrates different properties and benefits depending on the application

and frequency range of interest. Visco-elastic damping applied to the surface relies on the
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(a) Shear Damping (b) Shear and Compression Damping
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Figure 2.6 Cross-sections illustrating different constrained layer configurations. The cross-section in fig-
ure (a) primarily undergoes shearing during deformation; the cross-section in figure (b) undergoes moderate
shearing and in-plane tension and compression during deformation; the cross-section in figure (c) undergoes
significant in-plane tension and compression during deformation; and the cross-section in figure (d) under-
goes various degrees of shearing, in-plane tension and compression, and out-of-plane tension and compres--
sion during deformation.

extensional and compressional deformation since it is placed away from the neutral axis.
Damping isolation mounts are generally designed to cancel narrow band disturbances,
especially rigid body motion. Constrained layer damping can be used in shear, compres-
ston, and tension, depending on where it is placed in the structure. For panels the most
common approaches are to use surface and constrained layer damping. This work focuses
on constrained layer damping due to its versatility, and its proven performance with both

flat sheets and ribbed structures [Qian, 1997; Nagai, 1991].

Figure 2.6 demonstrates several possible constrained damping layer configurations. The
different configurations utilize different properties of the damping material by subjecting
it to different types of stresses and deformation processes. The effectiveness of the damp-
ing material configuration will depend on the types of loads and frequency range of inter-

est.
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The type of deformation that a panel undergoes has a strong effect on the behavior of the
damping material. Although it depends on the viscosity, damping material is often most
compliant in shear, and therefore shear damping is more suitably matched to lower fre-
quency bending modes where the stiffness is more suitably impedance matched. In-plane
tension and compression of the damping material can cause greater deformation with var-
ied levels of effectiveness on frequencies depending on the material. Out-of-plane tension
and compression is generally a less compliant form of deformation and is therefore often
better impedance matched to address the higher frequency modes of vibration. The above
statements are generalizations whose validity are greatly dependent on the situation and
material, but they reasonably characterize the behavior of thin damping layers in thin pan-

els.

Damping only strongly reduces the energy at resonance, or in modes. To understand this
better it is useful to know how damping is measured. A damping factor is defined as the

ratio of energy dissipated to the total energy in a system for a single cycle,

Wdissipated (2.46)

= Znw

total

where 1 is the damping factor and W represents the energy in a cycle. A majority of the
energy in a system shows up as an excitation of the modes of the system (at steady state).
When energy in the system is being converted to heat by viscous damping, the modal

energy is reduced.

Figure 2.7 illustrates a single mode of a transfer function. The damping factor for a partic-

ular mode of a system can be determined by

2 _ 2
_ W0 -07 Wy-0

Ca
=30 o (2.47)

where the frequencies are those indicated in Figure 2.7, and ( is the damping ratio seen

in most second order systems. Equation 2.47 is useful when determining the damping fac-
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Figure 2.7 Depiction of a mode and the associated parameters that determine the degree of damping.

tors for experimental systems. It should be noted that the damping factor can vary greatly
from mode to mode in the same system. This is because one mode will deform in an
entirely different manner than another, and depending on the damping properties and the
geometry of the system the damping material may be more or less effective based on the

deformation.

To gain insight into the variables that affect damping, one can look at a simple model for a
constrained damping layer in a beam with a configuration as shown in Figure 2.6a.
Through the Navier-Stokes equation and the solution to a simply supported Euler beam,

one can arrive at an equation for the damping factor of a beam

ukZzH
2phw,

(2.48)

where W is the damping material viscosity, k, is the wavenumber of the beam, H is the
thickness of one layer of the beam, p is the beam material density, 4 is the damping mate-
rial thickness, and ®,, is the natural frequency of the beam. For a simply supported beam

the natural frequencies are
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El
o, = k2 /p_A (2.49)

where E is Young’s modulus, [ is the bending inertia, and A is the cross-sectional area of

the beam. This leads to

J3u
= N 2.50
i hiJEp 220

From this it appears that damping, for the configuration shown in Figure 2.6a, is depen-
dent on the damping material’s viscosity and thickness, and the beam’s material proper-
ties. The reader should be reminded that the above is only reasonable for the

configuration shown in Figure 2.6a [Marsh, 1994].

As an important final note, it is necessary to realize the effect of damping on acoustics ver-
sus vibrations. It was noted above that damping only has a strong affect on the structural
modes of a system. As a result, damping is not always an effective means of acoustic
noise reduction. Damping can significantly reduce structurally actuated radiation, but it
may not have a significant effect on acoustically excited transmission. This is because
transmission often occurs due to coincidence which can be an off-resonance form of struc-
tural excitation. This fact must be considered when designing and evaluating panel

designs.
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Chapter 3

DESIGN OF QUASI-ISOTROPIC
PANELS USING CURVATURE

Rather than using one-dimensional corrugations or laminated honeycomb designs to alter
and improve stiffness properties of panels, it is the goal of this chapter to explore methods
of increasing stiffness by using two-dimensionally curved panels. It was proposed in the
hypotheses of Chapter 1 that improved performance over one-dimensionally corrugated
designs, and comparable performance to that of honeycomb sandwich designs could be
achieved by incorporating two-dimensional curvature into panels. In addition, it was
asserted that greater damping may be achieved when using a constrained damping layer
with the two-dimensionally curved panel designs, over typical flat constrained damping
layer designs. This chapter seeks to discuss the design issues of these panels by develop-

ing analytical theory, and modeling the systems.

The rationale for trying to alter the stiffness with two-dimensional curvature is four-fold.
One, it is desirable to have the ability to change a panel’s stiffness properties so that con-
trol can be exerted over the structure’s static and dynamic behavior. Two, it may be desir-
able to reduce the critical frequencies near to that of the fundamental frequency such that
greater transmission loss may be attained over a narrow frequency range (note, to accom-
plish this, significant damping must be attained within the structure). Three, increased
damping may be attained by combining a constrained damping layer with the two-dimen-
sionally curved design (i.e. due to the greater degree of deformation required during bend-

ing). Finally, it is desirable from a manufacturing and economic standpoint to be able to

75
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use a single layered design that can be stamped, injection molded, or thermoformed into
shape, rather than using multiple layers and materials in a honeycomb sandwich design. It
should also be noted that using a two-dimensionally curved design may be an inexpensive

alternative to honeycomb when the curved design is used in a sandwich design.

3.1 Altering Stiffness with Two-dimensional Curvature

For several decades it has been accepted that curved panels and shells can demonstrate
increased stiffness over flat panels [Hu, 1999; Steyer, 1997; Ng, 1995; Zhang, 1995; Bhi-
maraddi, 1991]. This knowledge has been used to create many structures with greater
stiffness and stability. Aside from spherical designs these designs were generally limited
to one-dimensionally curved panels such as cylindrical designs and corrugated or ribbed
designs. For structural purposes these designs can be beneficial, but due to their orthotro-
pic bending stiffness the application of these designs is limited. In acoustic applications it
can be detrimental to have a highly orthotropic panel design due to the increased fre-
quency range over which one encounters critical frequencies (see Chapter 2). The
increased range of critical frequencies can lead to a reduction in transmission loss and thus
noisier enclosures and components. In addition, orthotropic corrugated panels rely on
specific boundary conditions to ensure their structural functionality. To increase the isot-
ropy of panels and alleviate the dependence on boundary conditions two-dimensionally

curved designs are investigated.

In many structural and acoustic applications one would like to attain an isotropic design
that exhibits a constant bending stiffness in all directions along the panel. Unfortunately,
it is not possible to achieve this over all frequencies due to the fact that at small scales any
curvature in a panel will lead to some variation in stiffness. The best one can hope to
accomplish is isotropic behavior over the lower order modes, resulting in a narrowly
banded range of critical frequencies, where the global bending stiffness properties are
maintained within a desired window to maximize stiffness and minimize structural acous-

tic coupling.
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An important obstacle in determining optimal two-dimensional designs is defining metrics
by which the designs are evaluated. Since a goal of this chapter’s research is to be able to
compete with light and stiff sandwich designs, some primary metrics are maximum and
minimum stiffness (preferably narrowly banded), weight, and cost. The metrics of weight
and cost are relatively easy to determine, but trying to evaluate the isotropy of a two-
dimensionally curved panel can be quite complex. Even common geometric definitions

that relate to a panel’s stiffness can be misleading.

The most common measure of a panel’s stiffness, assuming a homogeneous material, is
the cross-sectional second moment of inertia for bending,

=" L( 2+—)dl ' G.1)

LYy

where 4 is the thickness (assumed to be nearly constant for this research), L is the length of
the cross-section being analyzed, and z describes the surface topography of the panel.
Refer to Equation 2.3, Equation 2.8, and Figure 2.1 in Chapter 2 for further details con-
cerning the relation of this term to bending stiffness. With this definition of stiffness one
can evaluate various designs. Ideally the value for I should be constant regardless of the
length and orientation of the cross-section along L. Equation 3.1 leads us to the conclu-
sion that the goal of the designs should be to move the material away from the neutral axis.
Although not directly captured in Equation 3.1, it should be obvious that the distribution

of material should be even and uniform above and below the neutral axis.

A primary weakness of the definition in Equation 3.1 is that it assumes that bending
occurs along straight lines. This is likely a poor assumption for many two-dimensionally
~curved designs. Although convenient for flat panels and beams, the typical definition for
bending stiffness fails to capture the physical possibility that bending may conform to a
panel’s shape, minimizing energy during bending. Thus, the bending “line” does not
occur along a straight line. Bending waves typically conform around obstacles such that

the energy of deformation is minimized. This phenomenon is difficult to characterize and
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is not directly addressed by this work. It is left as a responsibility to the designer to be
aware of this phenomenon when evaluating designs. Further discussion of this phenome-

non occurs in the following sections.

Like many design studies, this research does not assume that a single optimal design exists
for all situations or applications. Rather, multiple design approaches may yield several
well performing designs. Some designs may perform well in certain applications where
others do not. Using this philosophy, several different and promising panel designs were
achieved using distinctly different approaches. The approaches can be classified into four
separate categories: mathematical or parametric definition; statistical design; computer
generated designs; and designs based on experience, iterations, and a human understand-
ing that cannot otherwise be quantified. The following sections discuss these design

approaches.

3.2 Parametrically Defined Surfaces

The most logical method by which to define a two-dimensionally curved surface that dem-
onstrates isotropy is through mathematical definition. By developing differential equa-
tions that characterize the stiffness regardless of orientation one should be able to
determine solutions that satisfy the specified requirements. The difficulty in this approach
is that it is highly dependent on the criteria that is used to define the desired characteris-

tics.

As a first approach, formulas were developed to try and determine a surface with constant
isotropy, regardless of orientation (maintaining boundaries parallel to the x and y axes),
noting that a constant panel thickness and homogeneous material properties are assumed.

To do this, parametric definitions of the surface using differential geometry were used.



Parametrically Defined Surfaces 79

The class of surfaces that this thesis is concerned with are referred to as graphs*. A gen-

eral representation for a panel surface described by r is,
r(u,v) = x(u, v)i+y(u, v)j + 2(u, vk (3.2)

where x, y and z are simply the cartesian coordinates; # and v are variables describing
mappings of lines or curves on the surface and are functions of the parametric variable ¢,
and 7, } and k are the unit directional vectors. In the case of a graph, the surface descrip-

tion can be simplified because x =u and y = v,
r(u,v) = ui +vj + z(u, v)k. (3.3)

Since our definition for the second moment of inertia in Equation 3.1 is only valid along

straight lines, the mappings of u# and v must also be straight lines represented by,

u=a;+tb; 34

v = a,+1b, (3.5)

where a; and a, convey the distance from the origin to the line, b; and b, convey the
direction of the line, and ¢ represent the parametric variable. In defining the surface or
graph we must also consider that the height of the surface must be bounded, i.e.

—c £z< ¢, where ¢ is a preset limit.

Combining the parametric definition for a surface with the desired requirements, a differ-
ential equation can be formed that should lead to a class of surfaces that satisfy the prede-
termined requirements. The first goal is to see if a constant bending inertia can be
attained. Combining the surface definition with a generalized formula for the second

moment of inertia,

* This means that a line perpendicular to the x-y plane (defined as the plane parallel to the panel) can only
intersect the surface once. This restriction is necessary to ensure that the panels can be easily manufac-
tured by thermoforming or stamping.
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- 1
where I is a generalized representation for the second moment of inertia, and g = z2,
which is a function of u and v. To achieve constant stiffness the derivative of Equation 3.6

must be zero for all values of a,, a,, b; and b,. Therefore,

d7 _ 0 77du d T _
EI—$I§+$IE—O 3.7
or equivalently,
_ IJ’L dg du dg av)
0= I O(a—u §;+$ T dt, (3.8)
1 J’L dg dg
0= i 0($ b1+m bz)dt‘ 3.9
: Ju v . : . .
noting that Tl b, and Fri b,. The above is referred to as an integrodifferential equa-

tion. Unfortunately, it is only solved when g is zero at all locations (i.e. a flat surface)!
This can also be arrived at intuitively by realizing that any surface with curvature cannot
have identical distribution of material at all scales, especially at scales smaller than the

surface features.

To arrive at a non-trivial solution it is necessary to relax some of the constraints on the dif-
ferential equation. Instead of requiring that the stiffness be constant at all cross-sections
over all lengths, it may be more reasonable to require that the stiffness be constant over
some fixed length, rather than a variable length. Another approach may be to merely find
a surface where the minimum stiffness, in any direction over a certain length, is greater
than some prescribed minimum and where a maximum surface height is maintained. In
addition, it is also very important to determine a more accurate definition for bending stiff-

ness. Unfortunately, to perform all the above may be considered a thesis unto itself, and
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Figure 3.1 An example of a random graph surfaces defined by white noise with banded amplitudes. The
two panels illustrate different resolutions that lead to different feature size.
thus further development of this technique is left for future work so that other techniques

can explored.

3.3 Statistically Defined Surfaces

A second approach to designing the panels is to use a statistically varied surface. In other
words, use some method of random material distribution to ensure a varied and dispersed
surface. Over a large surface, randomly distributing the material at an upper and lower
extreme should lead to a design that has a nearly constant stiffness in all directions. The
key to coming up with designs that demonstrate a useful potential is again recognizing the
weakness of the definition for stiffness, and to be aware of the manufacturing restrictions

placed on panel shapes.

If the panel were simply defined by a white noise distribution of material (noting that it
still must be classifiable as a graph), then it is likely that the surface features would be too
small to be able to be manufactured. In addition, this approach to a panel design would
not likely demonstrate a great deal of increased stiffness because the bending would
merely conform around the random jagged features. Figure 3.1 illustrates two examples
of panels defined by white noise. The designs appear crinkled or folded, and the sharp
corners are part of the reason that these designs are less desirable, as they lead to stress
concentrations, provide paths for bending, and are difficult to manufacture. Another

option may be to use load-limited noise to limit the maximum curvature.
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Figure 3.2 [Illustrations of various aspects and designs of random maze defined panels. The top left figure
depicts the cross-sectional shape of the maze’s rib. The other three figures depict different levels of detail
and varied numbers of allowed walking directions.

Another method that utilizes a random distribution of material is to dimple the surface at
random locations. If rounded dimples are used then the folds and creases encountered in
the first random design can be avoided. The problem with a dimpled surface is that the
bending can conform around the dimples to some extent, thereby lessening the ability to
increase stiffness. In addition, the discrete shape of the dimple can be more difficult to
manufacture. In processes like vacuum forming and stamping, a great deal of thinning can

occur when forming dimple-like shapes because a great deal of deformation occurs on all

sides of the feature.

A third random based design that addresses some of the shortfalls of the previous two is
referred to as the maze design. The maze design is based on a random non-intersecting

walk pattern. Figure 3.2 shows several illustrations of different panel designs defined by
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the random maze and the cross section of the maze’s rib. Essentially a stepped rib pattern
is formed that has a random distribution of material. Unlike other rib-type patterns, the
maze design’s ribs intertwine to ensure a more isotropic bending stiffness. The cross-sec-
tion of the rib is in the shape of a domed dimple that has even distribution above and
below the neutral axis. The algorithm that defines the shape also ensures that every por-
tion of the panel is defined by the maze shape. As shown in the figure, the maze rib can be
of different sizes, and the number of directions in which the maze is formed can be set to
create more complex shapes. The size of the rib and the number of directions indicated is
ultimately determined by the application and the manufacturing restrictions. Ideally one
would prefer a finely detailed maze as this generally leads to a more isotropic surface, but
the more detailed surfaces are difficult to make. This rule is generally applicable to all the

two-dimensionally curved designs.

3.4 Computer Generated Designs

A third method of designing two-dimensionally curved panels with isotropic behavior is
to use computer-based optimization algorithms. The most important aspect of designing
the panels with this method is in setting up the problem. Computer-based algorithms can

only produce results as good as the programmer’s ability to pose the problem.

Many different variables exist in designing a two-dimensionally curved panel, and it is
necessary to give the computer a starting point. Several different approaches were
attempted when providing the computer with starting geometries and methods of evaluat-
ing the geometry. The three primary approaches were based on: two-dimensional Fourier
based shapes, simple tile based designs, and specific geometric design optimization. In
addition to providing the computer with a good starting point, the optimization method
used must properly account for the desired qualities in a manner that allows for conver-

gence in a reasonable amount of time.
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The optimization routine used herein primarily relied upon a least squares method of opti-
mization. Whereby a cost function is defined and minimized. The cost function takes on

the following form,

(3.10)

where C represents the cost function, &; is a quantifiable parameter intended to be mini-
mized, W is a weighting factor (the greater value of W the more important the parameter),
n is an integer representing the number of parameters to be considered. Setting up the cost
function is the most important aspect of the optimization problem. The cost function lets
the user define what parameters are important by their relative weightings. In addition, by
'including, or not including, various parameters different outcomes are possible. Further,
one must carefully consider how many parameters and variables to include. Complex
optimizations require complex parameters and many variables, but the more complex the
optimization the more likely it is that undesirable local minimas will be found, thereby

leading to sub-optimal results.

An important aspect of setting up the cost function is determining what parameters are to
be included. Since the goal of these designs are to achieve a lower-order bending isotropy
it is necessary to include parameters related to the bending stiffness. This becomes
extremely complex in the wake of the fact that a two-dimensionally curved panel has an
infinite number of cross-sections to evaluate. To define a workable parameter only a lim-
ited subset of these cross-sections can be evaluated. The analysis is first limited by the
resolution of the matrix defining the surface. A typical resolution for this work varied
between 0.1 and 0.01 inches for an 8 by 12 inch panel. This leads to a maximum range of
92,150,400 to 921,599,040,000 as a total possible number of cross-sections to evaluate
(not very computationally feasible). As a first cut at simplification only those cross-sec-
tions that go from boundary to boundary can be evaluated, thus leading to a range of

159,600 to 15,996,000 possible cross-sections (more computationally feasible). To reduce
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this further, the evaluation may be set to skip a certain number of cross-sections, realizing
that this may lead to detrimental results. A further level of simplification can be achieved
by only looking at those cross-sections that are parallel to the boundaries (these often are
important because nodal lines often form parallel to the boundaries). This simplification
leads to a possible range of 200 to 2,000 cross-sections to evaluate. It must be pointed out
that there are many other reasonable approaches to simplify the cross-sectional analysis;
the above are a few of the methods investigated. Tt should also be noted that with each
level of simplification it is more and more unlikely that a global optimum can be attained,
but it ensures that the computation can be performed in a single lifetime. Further, the
aforementioned problem of not being able to exactly characterize the bending cross-sec-
tion (i.e. merely assuming bending occurs along straight lines) leads to an even greater

likelihood that a sub-optimal design will be reached.

Some other parameters that need to be considered may characterize the size of the fea-
tures, the sharpness of the transitions, and the level of detail. Features that are too small
will be difficult to manufacture, while features that are too large may lead to unwanted
local compliance and degraded isotropy. The sharpness of feature transitions can also
strongly affect the manufacturability of the panel, especially when stamping and thermo-
forming at sharp corners may lead to stress concentrations and tears. Finally, detailed fea-
tures in the panel may further hamper the manufacturability of the designs as increased

complexity will lead to greater requirements in the manufacturing process.

Another important aspect when defining the cost function is the complexity of the rela-
tionship between the variable that can be altered and the parameter included in the cost
function. The more complex the parameter, such as some measure of total bending stiff-
ness, the more difficult it is to establish a relationship between the cost and the initial vari-
able. If the initial variable is imbedded in several layers of functions the causality will be

more difficult to establish, often leading to suboptimal results.
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Two-dimensional Fourier based shapes were the first explored. The computer was pro-
vided with a modified two-dimensional Fourier series with a limited number of elements
in the series. The variables that the computer could manipulate were the amplitude, wave-
length, and phase of each Fourier element. A modified form of the “Fourier” series that

allows products between the x and y direction terms can be represented by

z= }k: ]n‘k[(Ank- sin(% -x+(1)nkD : i'”-k[(Amk- sin(Tﬂ -y+(1)mkD 3.11)
o\ o * 0 ™

x=a—->b,y=c—>d,z=g—h,

where x, y, z represent the spatial coordinates, A represents the amplitude, T represents the
period, ¢ represents the phase, n represents the number of products in the x direction, m
represents the number of products in the y direction, and k represents the length of the
series. The terms a, b, c, d, g, and h represent the boundaries of the surface or profile in

each respective direction.

The idea of using a Fourier based surface came from the realization that any shape can be
represented by a Fourier series. The formula allows for a common set of variables (i.e.
amplitude, wavelength, and phase) in a simple and expandable form that is simple to alter
merely by adding or removing elements. Even with this simple starting point many opti-
mization obstacles were encountered. If greater than six elements were included in a
series, then convergence errors were encountered. In general, plausible designs were
obtained only when fewer than three elements were included. Some of the resulting sur-

faces are shown in Figure 3.3.

A second optimization approach was to provide the computer with a more definitive shape
and allow the computer to alter the scale of various features. The shape used in this design
was based on a series of ellipses of which the computer could alter the minor and major

radii. The basic shape of the feature was pre-defined but the exact proportions depend on
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Figure 3.3 Examples of Fourier based optimized designs. Designs (a) and (d) used only the stiffness mea-
surements parallel to the boundaries to arrive at a design, while designs (b) and (c) took into account diago-
nal bending cross-sections. Note that while the result in design (a) used multiple dimensions in its
definition, a one-dimensional surface resulted. The resulting surface appears effective according to the com-
puter algorithm but it is obviously very orthotropic.

the optimization routine. Figure 3.4 illustrates the basic shape of which the surface is

made and the configuration of the panel once the shape is repeated on the panel surface.

By altering the major and minor radii of the ellipses, significantly different bending stiff-
ness can be obtained. In addition, the reduced number of variables in the optimization
allows for better convergence. The major drawback of this approach is the limitation of
the initial design. The initial design essentially pre-defines the basic surface and therefore

the optimized version of this design is unlikely to be a global optimum.

The third and final computer optimized design approach uses a tile based approach. The
basic approach is to provide a square area that is some fraction of the panel (preferably an

order of magnitude smaller than the smallest panel length) defined by a pre-determined
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Figure 3.4 Illustration of a panel defined by elliptical arches. The figure on the left illustrates the basic
geometry, where the shaded area indicates the raised portion; the small r indicates the minor radius and the
large R indicates the major radius and are the variables of the design. The figure on the right is a panel
formed with this basic geometry.

Figure 3.5 Tile optimized panel designs. The panel on the left only accounts for stiffness parallel to the
boundaries while the panel on the right accounts for diagonal stiffness as well. The right panel shows the
single tile of which the panel is comprised.

resolution of points. The height of each point then becomes the variable that the optimiza-

tion algorithm can alter. The resulting design is a tiling of the identical squares.

The complexity of the optimization can be controlled both by the size of the square and
the resolution of the square. The larger the square and the greater the resolution of points
defining the square, the more complex the optimization becomes, and the less likely the
algorithm can converge. Some of this complexity can be reduced by limiting the height
increments of the points in the tile. The simplest case being when the point is only
allowed to be zero or the maximum height. Figure 3.5 illustrates an example of a tile and

the associated panel formed from the tile.
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3.5 Intelligently Optimized Designs

Unfortunately, the previous designs are based primarily upon algorithms and methods that
cannot consider some of the intangible and mathematically undefined characteristics of a
panel’s design. To account for these types of characteristics the best method is often to
utilize the human ability to design and recognize these often unquantifiable intangibles.
The previously discussed methods provide a starting point on which to build new intelli-

gently optimized designs.

The analysis results may indicate a stiff, quasi-isotropic design, but experimentally it may
fail because the mathematical analysis fails to capture some important aspect of the struc-
ture. Experience and understanding of the difficult to quantify issues are essential when
developing a quasi-isotropic panel design. Some of the issues that must be considered
include the fact that bending does not always occur along straight lines, the manufactura-
bility of the design, the aesthetics or appeal, and other limitations of the mathematical

parameters.

As mentioned before, it is important to realize that bending in a two-dimensionally curved
panel is unlikely to follow the straight cross-sections usually assumed in bending stiffness
analysis. Armed with this knowledge a designer can qualitatively analyze designs to
determine how easily bending can conform around various panel features and then make
modifications to improve the design. In doing this it is often helpful to look at contour
plots of the panels to determine how much a bending line must conform as it propagates
through a panel. Figure 3.6 depicts some of the earlier discussed designs as contour plots.
The designer can build on these previous designs, making modifications to improve them

without dramatically altering the design.

A second consideration that a designer must make is the manufacturability of the design.
This includes issues such as the sharpness of transitions, the size and detail of the features,
and the repeatability of the shape. Transitions that are too sharp are likely to lead to stress

concentrations and tears. Features that are too small or detailed are more difficult to man-
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Figure 3.6 [Illustrations of some of the previous designs depicted by contour plots. Long continuous
straight lines (or blank areas) indicate weak bending areas. Closely spaced lines indicate steep transitions.

ufacture with standard manufacturing processes. Finally, it is often beneficial to use
shapes that are repeatable. Repeatable shapes that can be tiled or stacked are desirable so
that panels of different sizes can be manufactured without creating entirely new tooling.
For repeatability, the tile and Fourier based designs are generally more desirable than the
statistically based maze designs (although it should be noted that it is possible to modify a

maze design to make it repeatable).

In recognizing these and other limitations of the mathematical parameters estimating the
performance of the panels the designer can modify the designs and come up with entirely
new designs that show improved characteristics. One design method that was pursued
was based on the two-dimensionally curved ribbed design based on a combination of the
maze and Fourier approach. It was recognized that two-dimensionally curved rib-like

structures could possibly lead to lower-order isotropic designs. One manner in which to
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create these two-dimensionally ribbed patterns is by imbedding the two-dimensionally

curved shape within a sinusoid as follows
z = sin(fan(x, y)) (3.12)

where the function of x and y essentially contains a formula for a shape. If one wanted to

create concentric circular ribs then the panel surface would be defined by
z=A- sin((x—cx)2+(y—cy)2—r2) (3.13)

where A is the amplitude of the ribs, r represents the radius of the initial repeated circle,
and ¢, and ¢, determine where the center of the concentric circles lie. An illustration of a
panel with this shape is shown in Figure 3.7a. The concentric circle design does very little
to stiffen the first mode of vibration because the bending lines during the first mode are
often nearly circular. To address this one can add sinusoidal variations in the azimuthal

direction to create a sort of flower petal design. Mathematically this shape is represented

by
— e )
z=A- sin{(x )+ (y-c)) - (sir{nl . atan(%])) (3.14)

—c )2
-2r- sin((nl . atan[uD — rZ]}
(x—c,)?

where n; represents the number of lobes or petals in the flower shape. An example of this
type of panel is illustrated in Figure 3.7b. Although this panel eliminates the circular
bending lines of the previous design, there still exists several areas where the design
exhibits bending compliance, especially near the corners and edges. In addition, this

shape is quite complex and would likely be difficult to manufacture.

Another approach is to use more exaggerated “zig-zag” patterns like those created with

the Fourier based approach. A zig-zag design can be defined by
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= A, sin(y - (AZ : sin(% : D) (3.15)

where A, is the amplitude of the sinusoidal zig-zag pattern in the x-y plane, and 7, is the
wavelength of the zig-zag design. The effectiveness of this design is based primarily on
the ratio of the amplitude, A_, to the wavelength, T,. The quality of being highly repeat-
able is also very desirable as this leads to greater manufacturability. Unfortunately, the
repeafability of the zig-zag shape also seems to limit its effectiveness as an isotropic
shape. The repeated troughs and valleys line up along diagonals and lead to much more

compliant regions.

To address the above problem another design was developed. The design used the basic
premise of the zig-zag design with periodically altering amplitudes and an offset progres-

sion. Itis described by

7=A4,- sin{Ax : sin(% - x) ~Ay-A,- sin(% : y) - kxx} (3.16)
where A, again relates the height of the panel, and the other variables are various weight-
ings controlling the relative lengths and amplitudes of the alternating zig-zag pattern. The
altering amplitudes ensure that the peaks and troughs do not line up and thus should lead
to a more isotropic design than the simple zig-zag design. This design is illustrated in

Figure 3.7c.

Several other design methods were explored that tried to utilize old and new geometric
knowledge. One design included Penrose based tiling patterns. Another investigated
fractal based designs. A third sought to combine repeated geometric patterns that inter-
twined in an almost “Escheresque” manner. There are as many possibilities as there are
shapes in the world. Due to the difficulty of analytically and numerically defining a
“good” design (“good” here meaning stiff and quasi-isotropic) it is difficult to determine

which designs will turn out to be superior. The fact that the problem is non-deterministic
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Figure 3.7 Illustrations of manually designed panels that use two-dimensional sinusoidal rib patterns.

makes it both an ideal and difficult design problem. All that can be done is to use a

designer’s instinct combined with crude analysis tools.

3.6 Comparative Analysis of Designs

Some of the previously discussed methods can be used to analyze basic properties of the
designs. Estimates of the cross-sectional bending stiffness can be calculated along various
directions. Additionally, the natural frequencies of the panel can also be estimated by
using the estimated bending stiffness. To further estimate the behavior of the different

panel designs, some of the less complex shapes can be analyzed using finite element anal-

ysis.

Although most of the results are presented in a dimensionless manner it is important to

note that the boundary conditions for these initial analyses are clamped on all sides (noting
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Figure 3.8 Estimated cross-sectional bending stiffness, parallel to panel boundaries, of several panel
designs. Each point along the horizontal axis represents the cross-sectional bending stiffness, as defined in
Equation 3.1, for a point along the respective panel axis. The vertical axis values are normalized by the the-
oretical maximum. The Fourier design is shown in Figure 3.3b; the Maze design is shown in Figure 3.2¢c;
the Tile design is shown in Figure 3.5b; and the Zig-zag design is shown in Figure 3.7c.

that a clamped panel will have increased stiffness, and that most machine enclosures have
boundary conditions that lie somewhere between a clamped and simple support). In gen-
eral, frequencies are normalized by the fundamental (first natural) frequency results of a

flat panel with the equivalent thickness, size, material, and boundary conditions.

As a first comparison the cross-sectional bending stiffness can be analyzed at all cross-
sections parallel to the boundaries. This will provide a comparative first look at the stiff-
ness along the cross-sections that are often most critical for rectangular panels (as nodal

lines generally form parallel to the boundaries). Figure 3.8 shows a comparison of several
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of the previously discussed panel designs. In general these values over estimate the stiff-
ness because they do not take into account the true bending path and they do not consider

non-parallel cross-sections.

To account for the bending stiffness along non-parallel cross-sections one can look at the
bending stiffness of a much broader array of cross-sections. One method is to look at
cross-sections extending from every boundary point to every other boundary point. The
result is an array of points that form a surface describing a global estimate of the bending
stiffness. A desirable result would be a nearly flat surface (small standard deviation) with
a large average value. Figure 3.9 shows several stiffness surfaces for different panel

designs.

From the above plots it appears that the Maze design provides the greatest overall average
stiffness, while the Zig-zag design provides a more uniform and isotropic design. It
should also be noted that a correction factor was included in the tile design such that
rounding at the cormers was assumed for manufacturing purposes. This leads to a greater
reduction in the stiffness than would otherwise be obtained by the exact design in

Figure 3.5b, with the extreme transitions and sharp comers.

Since the above are merely analytical estimates based on straight cross-sections, it is likely
that there is a significant amount of error in the results. To try and account for some of this
error one can take the analysis a step further and perform finite element analysis. This will
lead to more accurate estimates of the designs’ stiffness, and more importantly can pro-
vide some insight into the mode shapes. In addition, the finite element analysis can be
used as a comparison to the analytical results and provide some information about the
effect of altering amplitude of the panel features. Unfortunately, the complexity of many
of these shapes makes it extremely difficult to represent them in a drafted form, and even
more difficult to be able to represent them in a form that allows for finite element analysis.
As a result only limited designs can be analyzed with finite element analysis, but the

designs that can be analyzed provide insight into how well the simple analytic estimates
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Cross-Sectional Bending Stiffness from Boundary Points to Boundary Points
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Figure 3.9 Plots of two-dimensional arrays describing the bending stiffness of several panel designs. Each
point in the array describes the bending stiffness along a line from one point on the panel boundary to
another point on the boundary. The values are normalized by the theoretical maximum. Once again, the
Fourier design is shown in Figure 3.3b; the Maze design is shown in Figure 3.2c; the Tile design is shown in
Figure 3.5b; and the Zig-zag design is shown in Figure 3.7c.

work and can provide information about how amplitude of the design affects performance.

Further discussion of this is provided in Chapter 5.

Two of the designs that were analyzed with the finite element analysis are the “Simple
Fourier” design and the “Course Maze” design. The finite element analysis assumed con-
stant thickness and used shell elements (the assumption of constant thickness is not very
realistic for vacuum formed and stamped designs, but provides insight into the general

behavior of the design). Some of the resulting mode shapes and associated natural fre-
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Fourier Panel Design
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Figure 3.10 Plots of first natural frequency versus amplitude the indicating the effect of increased ampli-
tude. Results are presented for both analytical and finite element analysis.

quencies are depicted in Appendix A. From these results it is clear that some lower-order
isotropy exists because the first few mode shapes have the same basic shape as a flat
panel. A truly isotropic design should have the same mode shapes as an isotropic panel. It
can be inferred that the designs that indicated better performance in the analytic analysis

should also demonstrate better modal performance.

Another use of the finite element analysis is to study how the amplitude of the curvature
may effect the designs’ behavior. By altering the amplitude in successive finite element
runs, the effect on stiffness can be estimated, and a relationship can be established
between amplitude and stiffness for a particular design. This can then be compared to the

trend indicated by the analytic analysis, as is shown in Figure 3.10. The analytical esti-
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mate is based upon Equations 2.8, and 2.13, where the bending stiffness was assumed to
be the minimums given by cross-sections parallel to the boundaries (see Figure 3.8). As
expected the analytic results overestimate the natural frequencies. It should be noted that
if the amplitude becomes too great then lateral movement of the features will dominate the

dynamics and the natural frequencies may decrease with increasing amplitude.

3.7 Multi-layered Panel Designs

Rather than using the panels as a single layer, alternative designs can be accomplished by
attaching flat members to the raised surfaces of the two-dimensionally curved panels.
These multi-layered designs will have greater rigidity and may prove to be an inexpensive
alternative to honeycomb designs. The advantage of the two-dimensionally curved
designs to honeycomb is that they can be manufactured for far less cost. The manufactur-
ing methods of rolling, stamping, vacuum forming, and injection molding can all be used
to manufacture two-dimensional panels at significantly smaller variable cost than the typi-

cal extrusion methods used for honeycomb designs.

The primary requirements of the two-dimensionally curved portion of the multi-layer
design are to maintain a nearly constant overall thickness, minimize shear, and to maintain
some degree of isotropy. The single layer designs discussed above should provide the
necessary qualities. In fact, some of the issues, such as bending conforming around
curved features, should be less of an issue because the multi-layer design should help to

maintain the neutral axis at the center of the system.

Unfortunately, these designs are far too complex to model analytically, or even numeri-
cally. Therefore, analysis of these designs are performed experimentally and the results
are presented in Chapter 6. Both static and some dynamic results are presented with com-

parisons to honeycomb designs.

If successful, these inexpensive alternatives to honeycomb and other multi-layered

designs could prove to be a powerful advance for many structures (aircraft, space vehicles,
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Figure 3.11 Three different configurations for multi-layer designs with two-dimensional curvature.

even cardboard) that require light but stiff components. Figure 3.11 illustrates some possi-

ble configurations.

3.8 Damping and Two-dimensional Curvature

Another important aspect of the two-dimensionally curved pseudo-isotropic designs is
their behavior when they are used in conjunction with constrained damping layers. Con-
strained damping has been shown to be very effective for controlling vibration [Hale,
1994; Marsh, 1994]. It is believed that when the constrained damping layer is combined

with these curved panels greater damping can be achieved.
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The rationale for increased damping with curved surfaces is two-fold. One, some of the
damping material is moved away from the neutral axis where it will undergo greater
extensional and compressional deformation. If the majority of this deformation is in the
plane of the damping material, then a greater degree of deformation, may occur than if the
material is in shear at the neutral axis. Two, the curvature of the surface will lead to multi-
directional deformation. Again, the multi-directional flow or deformation may lead to

greater damping.

One possible drawback of the curved surface is out-of-plane deformation in the con-
strained damping layer. The effectiveness of the damping layer is likely to be less when
deformed in the out-of-plane direction. Near the neutral axis during bending, the curva-
ture may cause the constraining layers to move in opposite directions normal to their sur-
face causing a transverse compression or extension of the damping layer. A simple
illustration of this concept is depicted in Figure 3.12. This type of deformation may
inhibit the damping performance. Several different types of damping material configura-

tions may be required to determine an ideal design.

Due to the complexity of the dynamics of the curved surfaces combined with the con-
strained damping layer, relevant models are difficult to develop. Instead, this phenome-
non is studied only through experimental analysis and will be discussed further in

Chapter 6 and Chapter 7.

3.9 Summary

Several design approaches were introduced to create two-dimensionally curved, quasi-iso-
tropic panels. Simple analytic and numerical tools were used to analyze and compare the
resulting designs. Several key issues such as multi-layered designs, damped designs, and
dynamic behavior were also addressed. Although some important issues were raised and
some significant design criteria were established, a great deal of knowledge remains
undiscovered concerning two-dimensionally curved designs and their dynamic and static

behavior. Significant academic effort in dynamics, mathematics and physics will be
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Undeformed Cross-section with Constrained Damping Layer

Figure 3.12 Illustration of possible transverse compression that may occur in the constrained damping
layer, which may inhibit damping at lower frequencies.

required to establish more effective means of designing and analyzing two-dimensionally

curved panels with near isotropic behavior.

The next step in this area of the work is to examine some of the designs further with exper-
imental analysis. Since it is prohibitive to examine a great number of designs, only a few
are to be examined with the hopes of learning more about the behavior of these two-
dimensionally curved panels. Due to the results of the numerical analysis it was deter-
mined that designs that can provide the greatest insight into the behavior of quasi-isotropic
shapes were the Fourier design in Figure 3.3b, the Maze design in Figure 3.2d, and the
Zig-zag design in Figure 3.7c. These designs represent designs with both subtle and
extreme curvature and each has various degrees of repeatability. In addition, the designs

represent a broad spectrum of predicted performance. These designs are experimentally
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examined in Chapter 6. Their static and dynamic behavior is investigated, as well as their

performance when combined with constrained damping layers and multi-layer designs.



Chapter 4

DESIGN OF MODE-SHAPED PANELS

As was discussed in Chapter 2, the shape of the modes of vibration have a significant
effect on the vibration and radiation characteristics of panels. Some modes are more detri-
mental than others. For many vibration problems, the first few modes of a panel tend to be
the most detrimental because of their large displacements and shape. This is often why
vibration problems are addressed with stiffening members. Acoustically, the first odd
- modes also tend to be the most undesirable because of their ability to radiate noise. It
would be of great benefit if panels could be designed to have greater stiffness and the
resulting mode shapes be less affective at radiating acoustic noise. Unfortunately, how-
ever, current methods of stiffening result in reduced vibration, but increased audible

acoustic noise [VanBuskirk, 1993].

4.1 Rationale for Mode-shaped Panels

The approach used here to increase stiffness and minimize unwanted acoustic noise is
quite simple; design the panel such that it has the geometry of the most undesired mode. If
the amplitude of the modal design is great enough then that mode shape should not appear
in the lower frequency modal dynamics because the mode shape can only occur due to
nearly pure stretching, which requires greater energy for plate like structures. This is not

to say that it is impossible for a similar mode shape to appear, but since the deformation
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would be primarily due to stretching, it would occur at a much higher frequency and with

smaller displacement and velocity amplitudes.

The resulting panel design should have greater stiffness because it will posses the proper-
ties of a doubly curved shell. Shells have been shown to demonstrate much greater stiff-
- ness, especially at lower frequencies, because of the coupling between transverse and
longitudinal displacements. Increased stiffness is primarily due to the shell’s ability to
support a greater portion of the load parallel to the surface, rather than in the transverse
direction [Blevins, 1995; Dym, 1974; Gol’Denveizer, 1961]. In addition, the resulting
mode shapes are less likely to demonstrate the unwanted mode shape in which the panel is
formed, thus leading to a stiffer and quieter panel. Further, the subtle curvature of the
panel design should not lower the critical frequency of the panel. At the higher frequen-
cies where the critical frequency is encountered the bending deformation wavelengths that
coincide with the acoustic waves are small enough that the strain energy of the mode
shapes are dominated by bending deformatioh, and strains due to stretching is less signifi-

cant.

The use of a mode-shaped design cannot guarantee that the resulting mode shapes are sig-
nificantly less detrimental or less efficient at radiating noise. The design can only reduce
the likelihood of one particular mode shape from occurring. Fortunately, the fundamental
mode of a flat panel often dominates both the structural and acoustic performance of a
panel, making it the predominant shape in which to form the panels. The resulting mode
shapes of this mode-shaped panel should not resemble the modes of a flat panel, at least
the lower-order modes. The design goal is to ensure that the resulting lower order modes
resemble even modes more than odd modes, and to increase the fundamental frequency

(indicating an increase in stiffness).

An important point is that there is a minimum amplitude of the shape of the panel that
must be obtained for the design to function properly. The mode-shaped design must have

an amplitude that is much greater, preferably an order of magnitude, than the elastic bend-
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Figure 4.1 Illustrations of two mode-shaped panels assuming simply supported boundary conditions. The
fundamental mode is on the left and the next lowest odd mode shape is on the right.

ing range of a flat panel deforming in that shape*. Otherwise the panel may still bend in
that shape and the dynamics will not be greatly affected. The reason for this is discussed

in greater detail in the next section. Figure 4.1 depicts two mode-shaped panels.

4.2 Mechanics of Curved Structures

To understand the rationale behind the above assertions it is helpful to look at the mechan-
ics of several thin curved systems. First, thin beams are discussed and analyzed to demon-
strate how curvature and mode-shaped designs affect the mechanics of the system. Next,

two-dimensionally curved (i.e. doubly curved) panels are discussed and analyzed.

4.2.1 Curved Beams

Since, many approximate solutions for differential equations describing panels are based
on the solutions of beam equations, it is useful to first discuss the dynamics of curved
beams. The study of beams not only provides insight into the mechanics of panels, but it
also allows for a more complete analysis due to the relative simplicity of the beam equa-

tions compared to that of panel equations.

* A comparable metric for most materials would be to say that the amplitude of the shape must be an order
of magnitude greater than the thickness of the panel.
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The most commonly analyzed curved beams are those with circular curvature (also
referred to as circular arcs). Although circular curvature does not accurately describe the
geometry of a mode-shaped design, it is similar and provides a useful starting point for the
discussion. It is noted that the thickness of these beams is assumed to be much smaller
than the radius of curvature of the arc so that shear deformation and rotary inertia can be
neglected (a valid assumption for all the systems in this chapter). Further, the beams are
assumed to be of rectangular cross-section, essentially a slice of a shell, so that the flexural
and torsional dynamics are not internally coupled. Also, only longitudinal and in-plane
flexural vibrations are considered (as out of plane flexural vibrations are not a relevant

factor in panels).

The two primary classifications of interest here for the modal dynamics of circular arcs are
longitudinal modes and in-plane flexural modes. Longitudinal modes are those where the
primary deflections are due to extension and/or compression of the beam along the axis of
the beam. Flexural modes are dominated by the transverse displacement of the beam. It
has been shown that longitudinal modes have much higher natural frequencies than flex-
ural modes for the circular arcs discussed [Blevins, 1995]. This fact is critical to the
design of mode-shaped panels. The curvature of the arc couples the bending and longitu-
dinal modes such that the first in-plane flexural mode is influenced considerably. If the
boundaries of the arc are fixed (e.g. pinned or clamped), then the beam cannot support the
first in-plane flexural mode. Further, lower order odd mode shapes are strongly affected
by the curvature due to the fixed boundaries, while even mode shapes can form in the
presence of fixed boundaries [Blevins, 1995]. This phenomenon has important acoustic
ramifications. It can be inferred that the odd shaped modes will be shifted to significantly
higher frequencies due to the greater degree of longitudinal coupling that must occur. This
shifting of the odd modes to significantly higher frequencies is likely to lead to a reduction
of the radiation index over the frequency range of interest, although material and geomet-

ric parameters must be considered for each case.
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It is possible to delve deeper into the specific dynamics of a mode shaped beam, one can
adapt and analyze the non-linear coupled equations for a beam where longitudinal and
flexural deflections are considered. In addition, one-dimensional shell equations can also
be used to analyze the dynamics of mode-shaped beams. These developments are left for
later work as the purpose here is to explore several aspects of the design rather than focus-

sing on a single related phenomenon.

4.2.2 Discussion of Shells and Stiffness

By plastically deforming a flat panel into one of its mode shapes, one creates a curved
shell. If the boundaries are fixed (either pinned, clamped or somewhere in between), then
the resulting shape is a doubly curved shell, similar to those shown in Figure 4.1. A sig-
nificant amount of research has been devoted to the study of doubly curved shells because
of their structural properties. They tend to have high rigidity-to-weight ratios and thus are

ideal for many vehicle applications [Hu, 1999; Steyer, 1997; Chun, 1995; Zhang, 1995].

The detailed development of shell theory is beyond the scope of this work. It is a mathe-
matically complex field that has occupied a great deal of effort on the part mathemati-
cians, physicists and engineers. Even in its most complete form, the field can only weakly
characterize the dynamic phenomenon of some of the designs contained in this thesis. To
that end the details of shell theory are not included in this work and the reader is referred
to the literature [Liew, 1996; Bhimaraddi, 1991; Dym, 1974; Leissa, 1973; Gol’Denveizer,
1961]. This section merely illustrates some of the beneficial results that can be realized by

shell and mode-shaped designs.

As one of the goals of this work is to increase stiffness to reduce vibration, it is important
to recognize how this can be accomplished with shell and mode-shaped designs. A result
of having a mode-shaped panel is that it ensures an increase in stiffness due to the shifting
of deformation from flexural bending to longitudinal extension and/or compression defor-
mation (as was described in the previous section on beams). In fact, shells cannot support

bending deformation alone, unlike flat panels. The shift from bending to stretching leads
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to an increase in transverse stiffness because the compression or tension of a thin object

requires greater energy than bending [Blevins, 1995; Dym, 1974].

A simple example of the above phenomenon is apparent in structural arches. The arched
doorway is able to support greater loads because the forces are supported primarily in

compression, where the stiffness can be approximated by k_ = ETA . A flat-topped door-
way can support less of a force because the load is supported in bending, where the stift-
384EI1

5L3

length to thickness ratio is great, the stiffness of the arch is much greater.

ness (at the center) can be approximated by k, = . For most situations where the

Looking more specifically at panel and shell structures, it is possible to make a compari-
son between the natural frequencies of a panel in bending and a panel in pure stretching.
As was discussed previously, to have a mode-shaped panel deform further into the mode
shape in which it is designed, it must primarily deform in stretching (assuming fixed
boundaries and a panel shape amplitude much greater than its thickness). In this case the
panel deforms much like a membrane, for which there is accurate theory and equations of
motion. A membrane is a plate-like structure that can only resist deformation in tension or

compression. The natural frequencies for a rectangular membrane are approximated by

i2 2

where m is the surface density, E is the modulus of elasticity, A is the panel thickness, a
and b are the length and width of the panel, A is the panel area (i.e. A = a- b),andiand n
correspond to the number of nodal lines plus one in the a and b directions, or likewise the
number of flexural half-waves in a particular direction [Blevins, 1995; Gol’Denveizer,
1961]. The lowest frequency mode corresponds to i = n = 1. Armed with this formulation
and Equation 2.9, which describes the natural frequencies of a flat plate in bending, a com-
parison can be made for the natural frequencies of a panel in bending versus a panel in
pure stretching for the same approximate mode shape. If the comparison factor, X, is

defined as follows,
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fbending =X .f:stretching 4.2)
then 7 can be determined to be
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where v represents Poisson’s ratio. From this it is evident that a panel in pure stretching
occurs at much higher frequencies than a panel in bending for the panel geometries con-
sidered (i.e. h << a). For the fundamental mode shape, the natural frequency of a panel in
- stretching is at least two orders of magnitude greater than that of the natural frequency of a
panel in bending, and this increases as the thickness of the panel decreases or the area of
the panel increases. Therefore