998 research outputs found

    Xenopus: An ideal system for chemical genetics

    Get PDF
    Chemical genetics, or chemical biology, has become an increasingly powerful method for studying biological processes. The main objective of chemical genetics is the identification and use of small molecules that act directly on proteins, allowing rapid and reversible control of activity. These compounds are extremely powerful tools for researchers, particularly in biological systems that are not amenable to genetic methods. In addition, identification of small molecule interactions is an important step in the drug discovery process. Increasingly, the African frog Xenopus is being used for chemical genetic approaches. Here, we highlight the advantages of Xenopus as a first-line in vivo model for chemical screening as well as for testing reverse engineering approaches. genesis 50:207–218, 2012. © 2012 Wiley Periodicals, Inc

    Predicting Phenotypic Diversity and the Underlying Quantitative Molecular Transitions

    Get PDF
    During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render ~500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network without overhauling the core network architecture. Furthermore, by comparing the predicted landscape of phenotypes to multicellular patterns that have been experimentally observed across multiple species, we systematically trace the quantitative regulatory changes that may have occurred during the evolution of the Caenorhabditis genus

    Estimation of hidden chemoattractant field from observed cell migration patterns

    Get PDF
    Neutrophilic chemotaxis is essential to immune system response to external threats. During this process cells alternate between directed motion towards the higher concentration of external stimuli and correlated random walk. An individual neutrophil migration can thus be characterised as a stochastic dynamical process driven by an external chemotactic environment that is typically not measured. This introduces the problem of estimating spatially-varying chemoattractant concentration field from the observed migration patterns of cell populations. We propose a solution to this estimation problem in a statistical inference framework. The framework has measured cell positions in the field as inputs and employs the expectation-maximisation algorithm for joint estimation of full cell states and parameters of the chemoattractant field decomposed with cubic B-splines. The performance of the developed algorithm is accessed via process in vivo measurements of cell positions in the injured tail fin of zebrafish. Estimation results for different injury types evidence that the proposed estimation algorithm provides a rigorous connection between mathematical modelling and experimental data

    Lateral Gene Expression in Drosophila Early Embryos Is Supported by Grainyhead-Mediated Activation and Tiers of Dorsally-Localized Repression

    Get PDF
    The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence (“the A-box”) present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a “switch-like” response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo

    Homeotic Evolution in the Mammalia: Diversification of Therian Axial Seriation and the Morphogenetic Basis of Human Origins

    Get PDF
    Despite the rising interest in homeotic genes, little has been known about the course and pattern of evolution of homeotic traits across the mammalian radiation. An array of emerging and diversifying homeotic gradients revealed by this study appear to generate new body plans and drive evolution at a large scale.This study identifies and evaluates a set of homeotic gradients across 250 extant and fossil mammalian species and their antecedents over a period of 220 million years. These traits are generally expressed as co-linear gradients along the body axis rather than as distinct segmental identities. Relative position or occurrence sequence vary independently and are subject to polarity reversal and mirroring. Five major gradient modification sets are identified: (1)--quantitative changes of primary segmental identity pattern that appeared at the origin of the tetrapods ; (2)--frame shift relation of costal and vertebral identity which diversifies from the time of amniote origins; (3)--duplication, mirroring, splitting and diversification of the neomorphic laminar process first commencing at the dawn of mammals; (4)--emergence of homologically variable lumbar lateral processes upon commencement of the radiation of therian mammals and ; (5)--inflexions and transpositions of the relative position of the horizontal septum of the body and the neuraxis at the emergence of various orders of therian mammals. Convergent functional changes under homeotic control include laminar articular engagement with septo-neural transposition and ventrally arrayed lumbar transverse process support systems.Clusters of homeotic transformations mark the emergence point of mammals in the Triassic and the radiation of therians in the Cretaceous. A cluster of homeotic changes in the Miocene hominoid Morotopithecus that are still seen in humans supports establishment of a new "hominiform" clade and suggests a homeotic origin for the human upright body plan

    Expression of an engrailed -like gene during development of the early embryonic chick nervous system

    Full text link
    The engrailed gene has been identified in Drosophila as an important developmental gene involved in the control of segmentation. Here we describe the embryonic expression of a chicken gene, ChickEn (Darnell et al.: J Cell Biol 103(5):311a, 1986), which contains homology to the Drosophila engrailed gene. Northern blots of early chick embryo tissue poly(A) + RNA resulted in hybridization to at least three bands expressed predominantly in the brain/head region when probed with ChickEn genomic fragments. Eight cDNA clones generated from embryonic day 6 (stage 29–30) chick brain poly(A) + RNA are identical in their nucleotide sequence with the ChickEn genomic clone. In situ hybridization to sections of 4-day (stage 24) embryos indicated that ChickEn transcripts were concentrated in the posterior mesencephalon and anterior metencephalon. In cultures of chick cranial neural crest cells (eight to nine somites; stage 9) ChickEn transcripts were localized in a subset (approx. 8%) of cells examined after 2 days in culture. A mouse monoclonal antibody, inv-4D9D4, made by Coleman and Kornberg recognizes the engrailed -like homeo domain of the engrailed and invected proteins (Martin-Blanco, Coleman, and Kornberg, personal communication). Patel, Coleman, Kornberg and Goodman (unpublished) have shown that this antibody binds to the hindbrain of 2-day-old chick embryos. We have confirmed these results and shown that this antibody binds to the same region of 4-day (stage 24) chick brains that in situ hybridization showed contained ChickEn transcripts. This antibody also recognizes a homeo domain-containing ChickEn peptide expressed as a beta-galactosidase fusion protein in Drosophila cell culture. We have not detected ChickEn protein in any tissue prior to eight to nine somites (stage 9). These results delineate the major expression pattern of the ChickEn gene during early (prior to stage 30) embryonic development in the chick.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50222/1/490210234_ftp.pd

    Identification of benzopyrone as a common structural feature in compounds with anti-inflammatory activity in a zebrafish phenotypic screen.

    Get PDF
    Neutrophils are essential for host defence and are recruited to sites of inflammation in response to tissue injury or infection. For inflammation to resolve, these cells must be cleared efficiently and in a controlled manner, either by apoptosis or reverse migration. If the inflammatory response is not well regulated, persistent neutrophils may cause damage to host tissues and contribute to the pathogenesis of chronic inflammatory diseases, which respond poorly to current treatments. It is therefore important to develop drug discovery strategies that can identify new therapeutics specifically targeting neutrophils, either by promoting their clearance or by preventing their recruitment. Our recent in vivo chemical genetic screen for accelerators of inflammation resolution identified a subset of compounds sharing a common chemical signature, the bicyclic benzopyrone rings. Here, we further investigate the mechanisms of action of the most active of this chemical series, isopimpinellin, in our zebrafish model of neutrophilic inflammation. We found that this compound targets both the recruitment and resolution phases of the inflammatory response. Neutrophil migration towards a site of injury is reduced by isopimpinellin and this occurs as a result of PI3K inhibition. We also show that isopimpinellin induces neutrophil apoptosis to drive inflammation resolution in vivo using a new zebrafish reporter line detecting in vivo neutrophil caspase-3 activity and allowing quantification of flux through the apoptotic pathway in real-time. Finally, our studies reveal that clinically available ‘cromones' are structurally related to isopimpinellin and have previously undescribed pro-resolution activity in vivo. These findings may have implications for the therapeutic use of benzopyrones in inflammatory disease

    BMP Signaling Modulates Hepcidin Expression in Zebrafish Embryos Independent of Hemojuvelin

    Get PDF
    Hemojuvelin (Hjv), a member of the repulsive-guidance molecule (RGM) family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP) signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv
    corecore