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a b s t r a c t

Certain plants are known to accumulate heavy metals, and can be used in remediation of

polluted soil or water. Plant-associated bacteria, especially those that are metal tolerant,

may enhance the total amount of metal accumulated by the plant, but this process is still

unclear. In this study, we investigated metal enhancement vs. exclusion by plants, and the

phytoprotective role plant-associated bacteria might provide to plants exposed to heavy

metal. We isolated cadmium-tolerant bacteria from the roots of the aquatic plant Lemna

minor grown in heavy metal-polluted waters, and tested these isolates for tolerance to

cadmium. The efficiency of plants to accumulate heavy metal from their surrounding

environment was then tested by comparing L. minor plants grown with added metal

tolerant bacteria to plants grown axenically to determine, whether bacteria associated with

these plants increase metal accumulation in the plant.

Unexpectedly, cadmium tolerance was not seen in all bacterial isolates that had been

exposed to cadmium. Axenic plants accumulated slightly more cadmium than plants

inoculated with bacterial isolates. Certain isolates promoted root growth, but overall,

addition of bacterial strains did not enhance plant cadmium uptake, and in some cases,

inhibited cadmium accumulation by plants. This suggests that bacteria serve a phytopro-

tective role in their relationship with Lemna minor, preventing toxic cadmium from entering

plants.

1. Introduction

Industrial effluent and urban runoff often contain toxic heavy

metals such as cadmium, copper, zinc, nickel, and lead that

pollute surface waters. The heavy metal cadmium (Cd) is

found naturally in ores of zinc, lead, and copper. In unpolluted

environments, Cd is usually found in very low concentrations,

from 10 ng/l in fresh water to 1 mg/kg in soil, but anthropo-

genic sources can elevate Cd concentrations greatly (GLEC,

2000).

Cd has been shown to have a function in certain biological

systems, namely algae (Lane et al., 2005), but even small

amounts can be toxic to most organisms. In plants, toxic

levels of Cd may cause stunting and chlorosis. Cd enters cells

through uptake systems for other divalent cations, and

interferes with other ions such as calcium, magnesium,

phosphorus, and potassium inside the cell (Das et al., 1997). In

humans, Cd can cause kidney and bone damage, and can also

cause damage to lungs through inhalation (Dept. of Health

and Human Services, 2008). Metallothioneins, cysteine-rich
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metal-binding proteins, protect against toxicity to some

degree (Klaassen et al., 1999). Additionally, Cd has been shown

to cause single strand DNA damage in bacteria (Trevors et al.,

1986). Cd is well studied in aquatic environments because it is

particularly toxic to aquatic life. The United States Environ-

mental Protection Agency has classified Cd as a priority

pollutant and has set the maximum contaminant limit for Cd

in drinking water at 5 mg/l (USEPA, 2004).

Phytoremediation is a term used to refer to the use of

plants and their associated microbial communities to inac-

tivate or remove pollutants from the environment. This is an

emerging technology that can be used to remove heavy

metals such as Cd (Flathman and Lanza, 1998; Salt et al.,

1995). While some plants deal with toxic metals by exclu-

sion mechanisms, other plants have the ability to accumulate

heavy metals at extremely high concentrations, and

sequester them in their tissues (Whiting et al., 2004). Plants

that can accumulate metals at much greater concentrations

than those found in the environment are termed hyper-

accumulators, and there are numerous hyperaccumulators

known for zinc/cadmium (Baker and Brooks, 1989). For

cadmium, hyperaccumulators are defined as plants that

accumulate >100 mg/kg cadmium in dry weight of plants

(Baker and Brooks, 1989). Hyperaccumulators may also be

defined based on bioconcentration factor, or the ability to

accumulate metals in plant tissues at high concentrations

relative to the external soil or water environment (Zayed

et al., 1998). For cadmium, a hyperaccumulator is defined as

a plant that can accumulate greater than 1000 times the

concentration of Cd (based on concentration of metal in dry

weight of plant) than that in the surrounding medium (Zayed

et al., 1998).

Aquatic and wetland plants including the water hyacinth

Eichhornia crassipes (Agunbiade et al., 2009; Ingole and Bhole,

2003; Mishra and Tripathi, 2009; Zhu et al., 1999), the inva-

sive reed Phragmites australis (Ghassemzadeh et al., 2008), and

yellow velvetleaf Limnocharis flava (Abhilash et al., 2009) have

been studied for their abilities to remove metals from aquatic

systems. Strong attention has been focused on members of

the Lemnaceae (duckweed) family, including Spirodela poly-

rhiza (Rahman et al., 2007), L. minor (Hou et al., 2007; Oporto

et al., 2006; Uysal and Taner, 2009), and Lemna gibba (Del-

Campo Marin and Oron, 2007; Khellaf and Zerdaoui, 2009;

Megateli et al., 2009; Mkandawire et al., 2004b), for their abil-

ities to remove metals and metalloids from the environment.

L. minor is a small aquatic angiosperm that grows in still

waters, having a simple structure with a single root that is not

anchored in sediment, and leaves that float on the water

surface. This plant can live in many different environments

and has a wide range of conditions for growth (Landolt and

Kandeler, 1987). Under optimal conditions it can double

every 2e3 days.

A number of studies in the past two decades have shown

that L. minor can accumulate Cd in high concentrations in its

fronds, and studies have focused on the use of L. minor to

remove Cd from surface waters (Debusk et al., 1996; Hasar and

Obek, 2001; Wang et al., 2002; Zayed et al., 1998). This plant is

considered a good choice for remediation projects, because

due to its rapid growth rate and ease of removal, it can be

harvested at regular intervals (weekly or biweekly), keeping

the metal from continuous reintroduction into the ecosystem

(Debusk et al., 1996).

While studies have shown that L. minor can accumulate

high levels of Cd, it has also been shown that the plant cannot

tolerate high concentrations of Cd in the surrounding water

(Wang, 1990). Due to this sensitivity to dissolved metals

L. minor has been also used to assess toxicity in the environ-

ment (USEPA, 1996). Signs of toxicity in L. minor may include

chlorosis, stunting of growth, colony separation, and root

detachment, and monitoring agencies continue to develop

methods to use the plant as a toxicity indicator (APHA et al.,

1992, GLEC, 2000).

Several phytoremediation studies have shown that rhizo-

sphere bacteria contribute to plant metal tolerance and

increased metal uptake (Crowley et al., 1992; De Souza et al.,

1999; Salt et al., 1999; van der Lelie et al., 2000). Bacterial

metal resistance has been described as a necessity for plant-

associated bacteria in contaminated environments (Salt et al.,

1999), and may be related to plant metal uptake, since the

bioavailability of metals could be altered by expression of

bacterial metal resistance systems (van der Lelie et al., 2000).

While plants may protect bacteria from toxic metals in the

surroundingmediumby providing a surface for attachment as

well as nutrients (Andrews and Harris, 2000), bacteria may

also protect plants from metal toxicity, by mechanisms such

as depositingmetals outside of bacterial cell walls (Lodewyckx

et al., 2002).

Often bacteria contain resistance systems, active mecha-

nisms for removing or sequestering metals (Gadd, 1992). For

cadmium, there are several types of resistance systems

involving efflux pumps to remove metals from the cell (Nies,

2003). Bacteria may also express some level of metal toler-

ance due to production of EPS (Pagnanelli et al., 2003; Solisio

et al., 1998), or accumulation of metals on their cell surfaces.

This may allow for bacterial contribution to metal accumu-

lation in the plant-microbe system. For example, heavymetal-

resistant strains of Azotobacter produced EPS, restricting the

amount of Cd and Cr accumulated by wheat (Joshi and

Juwarkar, 2009). Certain bacteria, known as plant growth

promoting rhizobacteria, produce compounds that stimulate

plant growth, even in the presence of metals, which allows

greater metal accumulation by plants. Some of the most well

characterized compounds include siderophores (Crowley

et al., 1992) and indole-3-acetic acid (Leveau and Lindow,

2005).

In this study, we investigated the cadmium tolerance of

isolates from the rhizoplane of L. minor, the implications

these plant-associated bacteria have for enhanced metal

removal, and the effects of enriching for these bacteria on

plant growth and plant metal accumulation. While it has

already been shown that L. minor is capable of accumulating

high concentrations of cadmium, we hypothesized that

under conditions where microbial growth is enhanced,

cadmium accumulation in plants would also be enhanced

due to stimulation of plant growth by microorganisms. We

demonstrate that plant-associated bacteria exert a phytopro-

tective role for the plant, increasing the metal tolerance of

sensitive Lemna plants while not increasing cadmium accu-

mulation, most likely due to sequestration of metal at the

microbial surface.
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2. Materials and methods

2.1. Isolation of bacteria from plants with or without
cadmium

L. minor was obtained from two sources; laboratory-reared

plants obtained from the US Environmental Protection Agency

(EPA) and plants collected from Rice City Pond (RCP), a highly

contaminated impoundment of the Blackstone River in Massa-

chusetts (USA) (Table 1). Plants were previously identified by

chloroplast ribosomal sequence analysis as L. minor, and plants

weregrown inthe laboratoryat20 �Cunderaphotoperiodof16h

light/8hdarkasdescribedpreviously (Stout andNüsslein, 2005).

EPA plants and RCP plants were used for 14-day treatments

and were grown either with or without 100 mg/l CdSO4. This

concentration was chosen as a test concentration based on

literature reports and our previous test series that showed this

as the lowest sublethal concentration of Cd to plants over two

weeks (Huebert and Shay, 1991). EPA plants were shown to be

more sensitive to Cd, based on frond counts, than RCP plants

(Table 2), and so EPA plants were used for axenic experiments

due to their greater sensitivity, although both plants were

used to obtain bacterial isolates. After 14 days, EPA and RCP
plantswere placed onmedia plates using double concentrated

ASTM nutrient solution (APHA et al., 1992) solidified with

noble agar (ASTM medium). Plants from all treatments were

plated on ASTM medium, ASTM medium with added plant

extract (water from an overgrown culture of L. minor, filtered

and added to medium at 1/4 strength), and ASTM medium

with added 0.1% glucose as a carbon source, all either with or

without 100 mM CdSO4 (e20 mg/l CdSO4). Prior to placement on

solid media, plants were rinsed with sterile distilled water to

remove non-rhizoplane bacteria.

Isolates from plates were identified by 16S rRNA analysis.

PCR of isolates was performed directly from colonies using

primers 8F and 1492R (Weisburg et al., 1991). PCR amplifica-

tions were prepared with 0.25 mM each dNTP, 1 U/10 ml Taq

polymerase, in 1� Buffer (all from Promega, Madison, WI),

1.5 mM MgCl2 (Sigma, St. Louis, MO), 0.5 mM of each primer

(Integrated DNA Technologies, Coralville, IA), and DNA

template in a final volume of 30 ml. Reactions were performed

in a PTC-200 Peltier thermal cycler (MJ Research, Waltham,

MA) and consisted of 30 cycles of 95 �C for 30 s, 56 �C for 30 s,

and 72 �C for 30 s with an initial denaturation at 95 �C for 5min

and a final extension at 72 �C for 5 min. PCR products were

purified with the QIAquick PCR purification kit (Qiagen,

Valencia, CA), quantified by comparison to PCR ladder V (PGC

Scientifics, Frederick, MD) using a digital imaging systemwith

LabWorks software (UVP, Upland, CA), and were directly

sequenced. Sequencing reactionswere prepared using the ABI

Big Dye 3.1 kit (Applied Biosystems, Foster City, CA). Dye

terminator cycle sequencing reactions were prepared

according to manufacturer’s instructions with the primer 8F,

and were sequenced with a model 3730 � l DNA Analyzer

(Applied Biosystems, Foster City, CA). Sequences were edited

using the software Chromas (www.technelysium.com.au/

chromas.html), and were compared to those in the RDP II

database (Cole et al., 2003). Sequences were aligned using the

Clustal interface in the software package BioEdit (Hall, 1999).

Phylogenetic trees (Supplemental Fig. S4) were created with

MEGA v.3 (Kumar et al., 2004), using the neighbor-joining

Table 1 e Reported water quality data for Rice City Pond
surface water.

mg/l

Conductivity* 518a

pH* 6.8a

DO 6.8a

Ammonia, as N 0.19b

Ammonia þ org N, as N 0.86a

NO3 þ NO2, as N 2.79a

P 0.71a

Cl 104b

Pheophyton* 7.4a

chlA* 6.99b

BOD 3.7b

TSS 7.35b

VSS 3.17b

Cd 1.75b

Cr 0.010c

Cu 0.019c

Fe 1.770c

Ni 0.018c

Pb 0.016c

Zn 0.019c

Data are in mg/l, unless otherwise noted; Conductivity is given in

mS/cm; pH is shown in standard units; Pheophyton and chlA are

given in mg/l.

DO ¼ Dissolved oxygen; ChlA ¼ chlorophyll A; BOD ¼ Biological

Oxygen Demand; TSS ¼ Total Suspended Solids; VSS ¼ Volatile

Suspended Solids.

a USGS: United States Geological Survey (USGS, 2004).

b USACE: United States Army Corps of Engineers. Wright, R. Bac-

Phase 2. USACE, unpublished report. For phase I information, see

(Wright et al., 2004). Values are averages for two month period of

measurements in JuneeAugust 2001.

c USEPA: United States Environmental Protection Agency (Snook,

1996). Numbers are averages of values measured at intervals over

a 24 h period.

Table 2 e Frond counts of EPA and RCP plants, grown in
Cd or no Cd, as well as in either EPA or RCP water.

Plant Number % growth of Cd
treated to no Cd

t0 t14

EPA plants

In EPA water 30 243 66%

In EPA water þ Cd 30 172

In RCP water 30 228 34%

In RCP water þ Cd 30 98

RCP plants

In RCP water 30 117 69%

In RCP water þ Cd 30 90

In EPA water 30 103 52%

In EPA water þ Cd 30 68

Frond counts taken at start (t0) and end (t14) of 14-day treatments

in different waters. In all cases, RCP plants grew slightly better in

Cd than EPA plants. All plants showed a decrease in growth in

solutions with Cd added compared to solutions without Cd, and

percentages given are the percentage of growth in Cd to that in the

same water with no added Cd.
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algorithm with 1000 bootstrap replicates. Possible chimeras

were detected using the Bellerophon server (Huber et al., 2004)

and were examined more closely. One isolate, EPACd12, was

flagged as a putative chimera, although rechecking with the

Pintail software (http://www.bioinformatics-toolkit.org/Web-

Pintail/) revealed no sequence anomalies.

2.2. Characterization of metal tolerance in isolates

To determine the range of cadmium tolerance in bacterial

isolates from plants, isolates were transferred to Mineral Salts

Medium (MSM), amedium recommended by Roane (Roane and

Pepper, 1999) for testing bacterial growth in metals, for

subsequent cadmium tolerance tests. Isolates were first tested

for their ability to grow in MSM, and almost all isolates grew in

MSMaswell as in ASTM. ASTMmediumwas not used for these

tests due to precipitation of cadmium at higher concentra-

tions. Isolates were grown in six twofold dilutions with the

highest at 10 mM cadmium (as CdSO4) (and concentrations of

5, 2.5, 1.25, 0.63, 0.31, 0.16mM) and a control without cadmium,

arranged in 96-well plates. Measurements were taken every

6e8 h with a SpectraMax 190 microplate reader (Molecular

Devices, Sunnyvale, CA), over a period of 96 h.

2.3. Siderophore production

Bacterial isolates were tested for siderophore production in

order to determine whether they promoted plant growth by

this means, thus allowing greater metal accumulation. Side-

rophore production in isolates was tested by plating colonies

on chrome azurol S (CAS) medium (Schwyn and Neilands,

1987), using MSM with low citrate (0.1 g/l) as a base. Colonies

producing siderophores changed the medium color around

them from blue to orange.

2.4. Axenic plant cultures

EPA laboratory plants were surface-sterilized by submersion

into a 0.1% bleach solution (from 5% sodium hypochlorite) for

5 min. Following treatment, plants were rinsed twice in

distilledwater andwere plated onto agar containing 2� ASTM

medium for recovery. Plants were allowed to grow at 20 �C
exposed to alternating photoperiods of 16 h light and 8 h dark,

andwere transferredontonewplatesuponplant regeneration.

Plants with no visible bacterial growth were further examined

for surface sterility by placing them on the complex R2A

medium and also by staining plant sections with the nucleic

acid stain Syto-9 (Invitrogen, Carlsbad, CA), and visualizing by

epifluorescence microscopy.

2.5. Plant metal uptake with added bacteria

Plant growth and plant metal accumulation were measured

after the addition of isolates (Table 3) to the growth medium

with metal-sensitive EPA axenic plants. Treatments with

mixtures of all EPA or RCP isolates and mixtures of all isolates

from EPA or RCP were also included. All experiments were

conducted in triplicate (Supplemental Table S2). Experiments

were set up in large glass culture tubes with 30 ml medium

containing ASTM solution (without EDTA) and 100 mg/l CdSO4.

This particular concentrationwas chosen as it was the highest

concentration that was sublethal to the plants over the time

period studied, but lower concentrations could be included in

future studies. In order to stimulate bacterial growth, the final

medium was amended with 0.1% glucose (Crowley et al.,

1992). To each tube, 20 ml of liquid culture in late exponential

growth phase of the respective bacterial isolate was added to

two plants in the two-frond stage of growth.

Growth rates based on frond counts and cadmium

concentrations were measured. Every three days fronds were

counted and other phenotypic observations were recorded.

Growth rates were calculated as

m ¼ ln Nt2 � ln Nt1=t2 � t1

where Nt is the number of fronds at time t (Mkandawire

et al., 2004a).

Two additional factors, including the pH value of the plant

growth medium and root elongation, were also determined in

these plant-bacterial growth experiments after 14 days, and

compared to axenic plant controls. Student t-tests were con-

ducted to compare growth of samples to the bacteria-free

control.

Table 3 e Isolates used as amendments to axenic EPA plants.

Seq ID Sequence match from RDP % Similarity Isolation source\Plant/medium

EPA 5 Methylobacterium sp. iRIII1 100 EPA/ASTM þ Gluc þ Cd

EPA 6 Microbacterium sp. S15-M3 95.7 EPA/ASTM

EPACd 7 Flectobacillus sp. MWH38 94.7 EPA þ Cd/ASTM þ Gluc þ Cd

EPACd 10 Sporocytophaga cauliformis 9726R 97.0 EPA þ Cd/ASTM þ PE þ Cd

EPACd 12 Limnobacter sp. HTCC376 99.3 EPA þ Cd/ASTM þ PE þ Cd

RCP 5 Methylophilus leisingeri DSM 6813 98.6 RCP/ASTM þ Gluc þ Cd

RCP 6 Oxalobacteraceae bacterium MWH73 88.4 RCP/ASTM þ Gluc

RCP 9 Variovorax paradoxus Cwt6 100 RCP/ASTM þ Cd

RCP C1 Zoogloea ramigera ATCC 25935 94.7 RCP/ASTM þ Gluc

RCP C2 Pseudomonas sp. K94.08 100 RCP/ASTM þ Gluc

RCPCd 1 Acidovorax sp. BSB421 100 RCP þ Cd/ASTM

RCPCd 7 Agrobacterium tumefaciens CFBP2712 100 RCP þ Cd/ASTM

RCPCd A2 Uncultured bacterium AKIW473 86.8 RCP þ Cd/ASTM þ Gluc þ Cd

RCPCd E1 Pseudomonas sp. NZ039 100 RCP þ Cd/ASTM þ Gluc

http://www.bioinformatics-toolkit.org/Web-Pintail/
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2.6. Measurement of cadmium concentrations in plants

Metal measurements in Lemna plants usually involve large

amounts of plant material, due to the high water content of

the plants. Because our samples were relatively small, we

used less plant material, and attempted to measure single

plants in order to quantify the variation in metal accumula-

tion between individual plants. While single plants produced

too little drymaterial for analysis in previous studies, we were

able to successfully measure samples of 2e3 plants in most

cases, except the few plant/bacterial combinations where

bacteria caused extreme deterioration of plant biomass over

the treatment period so that therewas almost nomaterial left.

Plantmaterialwasdigestedusing aCEMMarsXpress closed

vessel microwave digestion system (CEM Corporation,

Matthews, NC). For each sample, 0.02e0.1 g of plant material

(wet weight) were digested by adding concentrated HNO3 and

30%hydrogenperoxide, following the protocol ofWuet al. (Wu

et al., 1997). Sample volume was diluted to 50 ml with double

distilled water before the measurements. The cadmium

concentration in the samples was measured by using induc-

tivelycoupledplasma-optical emissionspectroscopy (ICP-OES)

on a PerkineElmer Optima 4300 DV analyzer (Perkin Elmer,

Shelton, CT). The level of detection for Cd was 0.62 mg/g.

2.7. Nucleotide sequence accession numbers

Nucleotide sequences were submitted to GenBank with the

accession numbers DQ922740 to DQ922765 for isolate 16S

rRNA sequences.

3. Results

3.1. Analysis of bacterial isolates from plants

Isolates were identified by 16S rRNA gene analysis. Isolates

from EPA plants were most closely related to members of the

genera Flavobacterium (Sporocytophaga), Microbacterium, Flecto-

bacillus, Limnobacter, and Methylobacterium. Organisms related

to Caulobacter and Microbacterium were only found in EPA

treatments without added cadmium. RCP isolates included

members of the genera Variovorax, Agrobacterium, Methyl-

ophilus, Pseudomonas, Zoogloea, Duganella (Oxalobacteraceae),

and Acidovorax (Table 3, Supplemental Fig. S4).

Isolation techniques successfully utilized media based on

either plant extract or onglucose as a carbon source.Almost all

bacteria initially isolated on plant extractmediumwere able to

also grow onmediumwith glucose as the sole carbon source.

3.2. Characterization of metal tolerance

Plants from the four different treatments (EPA, EPA þ Cd, RCP,

or RCPþ Cd) were placed on solidmedia plateswith or without

cadmium. EPA plants that had not been exposed to cadmium

did not yield bacterial growth on plates with cadmium.

However, for RCP plantswhich have a history of exposure to Cd

in their natural setting, bacteria grew on plates with cadmium

whether plants had been exposed to added cadmium in labo-

ratory microcosms or not. In liquid culture experiments

measuring bacterial growth at different cadmium concentra-

tions over time, several growth patterns emerged for different

isolates. Some isolates only grew inmediumwithout cadmium

(isolates RCP C1, RCP 9, RCPCd A2, RCPCd 1, RCPCd 7, EPA 6,

EPACd 7, and EPACd 12); others showed growth at first only in

medium without cadmium, and after a lag phase of 24e40 h,

grew also in concentrations of cadmium between 0.1 and

0.6 mM (isolates RCP C2 (Fig. 1), RCP5, RCP 6, RCPCd E1, EPA 5,

and EPACd 10) (Supp. Figs. S1aeg). No isolates were able to

grow in concentrations above 0.6 mM Cd.

3.3. Phytoextraction of cadmium with added bacteria

We chose to focus on the effects of isolates on EPA axenic

plants due to these plants’ greater sensitivity to metals

compared to RCP plants (Table 2). EPA plants grown with

fourteen different bacterial isolates (Table 3) were measured

at the end of 14 days to determine the effect of select bacteria

on plant growth and cadmium phytoextraction. Criteria

chosen were frond counts, root length, final pH of medium,

and cadmium concentrations in plants. A small amount of

glucose was added to the medium to enrich bacterial growth.

In previous tests by other research groups, sucrose was used,

especially to test for contamination of axenic plants (Crowley

et al., 1992; Srivastava and Appenroth, 1995); however, in our

initial experiments, no visible growth was observed in

sucrose. Isolates showed growth on plates amended with

glucose, and so were expected to grow in plant medium with

glucose. Several isolates (5 out of the 14 unique isolates)

showed poor microbial growth (as evidenced by no turbidity)

or led to poor plant growth in the liquid test medium with

added cadmium and glucose, including RCP 9, RCPCd 1, RCPCd

E1, RCPCd A2, and EPACd 7. Plants inoculated with these

bacteria were not measured for cadmium accumulation, due

to either no observable microbial growth or extremely little

plant biomass production, and in some cases extreme dete-

rioration of biomass so that almost no plant material was left
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Fig. 1 e Growth curve of representative isolate RCP C2

exposed to Cd2D concentrations ranging from 0 to 10 mM.

Absorption at 600 nm is used as a proxy for cell density.

Isolates with similar patterns to RCP C2 include RCP 5,

RCP 6, RCPCd E1, EPA 5, and EPACd 10. Growth curves for

all isolates that grew in cadmium are detailed in the

supplemental data (S1aeg).
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in the tubes. Root length, final pH of the medium, and growth

rate of these plants were measured. These plants had very

short roots, which were not significantly longer than the

sterilized plant control, the pH values of the growth medium

after two weeks were not significantly lower than the sterile

plant control, and growth rates were significantly lower than

the sterilized plant control.

Cadmiumaccumulationwasmeasured in plants inoculated

with nine different isolates individually and as a mixture.

Accumulation was high in the axenic control without bacteria,

and the lowest accumulation was observed in tubes where

a combination of all isolates had been added (Fig. 2a). Signifi-

cant differences were seen when comparing the control

without bacteria to different combinations of isolates RCP all,

EPA all, RCP and EPA all, RCP C2 (Pseudomonas sp.) only, and EPA

6 (Microbacterium sp.) only, all of which accumulated less

cadmium than the axenic control (Supp. Table S1).

Root length was directly correlated with bacterial growth.

Roots were longer in all isolate treatments where bacterial

growth was observed (Fig. 2b). In controls without bacteria,

roots were very short (e0.5 cm), whereas individual isolates

EPACd 10 (Flavobacterium sp.), EPACd 12 (Limnobacter sp.), EPA 6

(Microbacterium sp.), and RCP 6 (Oxalobacteraceae), and the

mixtures of isolates had much longer roots (Fig. 2b). When

comparing p values derived from Student’s t-tests, most

isolates had significantly increased root length compared to

the control without added bacteria (Supp. Table S1).

As with root length, the final pH value of the medium for

every isolate testedwas significantly lower than the treatment

with no added bacteria, except in the cases where there was

no bacterial growth observed (Fig. 2c, Supp. Table S1). When

comparing plant growth rates based on frond count, most

treatments with bacterial growth were not significantly

different from the control without added bacteria (Fig. 2d,

Supp. Table S1, Supp. Table S2).

Bacteria influenced plant growth negatively in some cases,

especially for isolates RCP C1 (Zoogloea sp.) and RCPCd E1

(Pseudomonas sp.), where there was very limited frond repli-

cation in the 14 day test period, and fronds turnedwhite by the

end of the experiment.

When comparing frond counts, final medium pH, final root

length, and cadmium accumulation, there was a strong

negative correlation between cadmium accumulation and

root length (r ¼ �0.70). There was no correlation between

cadmium accumulation and growth rate (r ¼ �0.04), and only

a weak positive correlation between cadmium accumulation

and pH (r ¼ 0.45). There was also a weak positive correlation

between root length and growth rate (r ¼ 0.51), a weak nega-

tive correlation between root length and pH (r ¼ �0.56) and

a weak negative correlation between growth rate and

pH (r ¼ �0.42).

3.4. Plant growth promotion by siderophore production

Siderophore production was determined by the CAS plate

method. Clearing or changing of the medium from blue to

orange was seen in isolates EPA 5, RCP 9, RCPCd A2, RCP C1,

RCP C2, and RCPCd E1 (see Supp. Fig. S2). RCP 9, RCPCd A2, and

RCPCd E1 were among the isolates tested with plants that

showed poor plant growth or no bacterial growth as indicated

by turbidity and were not measured for Cd accumulation.

Isolate RCP C1 also led to poor plant growth. While plants

inoculated with isolate RCP C2 showed significant Cd accu-

mulation, neither RCP C2 nor EPA 5 led tomore root elongation
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than non-siderophore producing isolates such as EPACd 10,

EPACd 12, EPA 6, or RCP 6.

4. Discussion

Our findings indicate that plant growth promoting bacteria

play a role inmetal accumulation by L.minor. We demonstrate

that selective addition of formerly plant root associated

bacteria not only have a phytoprotective effect and improve

the heavy metal tolerance of the plant, but also that the

presence of these isolates lead to longer root zones thus

improving heavy metal phytoremediation over an extended

root zone.

In previous studies (Stout and Nüsslein, 2005) 16S rRNA

gene clone library analyses identified the b-proteobacteria as

the dominant group amongst bacterial rhizoplane communi-

ties on these plants, regardless of cadmium exposure. In this

study bacteria isolated from EPA or RCP Lemna roots either

exposed or not exposed to cadmium again belongedmostly to

the proteobacteria, specifically the b-proteobacteria, although

the most dominant species found in clone libraries were not

isolated here. It is often the case that themost readily cultured

organisms do not appear the most frequently or even at all in

clone libraries (Eilers et al., 2000; Zhang et al., 2007). While we

expect that many organisms that are not culturable will only

appear as sequences in clone libraries due to the bias we know

exists in microbial culturing techniques, the opposite, where

bacteria that have been cultured from a particular site are not

detected in a clone library, may also occur due to biases in

DNA extraction and PCR methods that may select against

extraction of DNA from certain difficult-to-lyse cells

(Simbahan et al., 2005).

Depending on growth conditions and media used, E. coli

can tolerate cadmium at levels as high as 0.5mM,whereas the

metal-resistant Ralstonia metallidurans CH34 can tolerate levels

of cadmium ten times as high, up to 5 mM (Nies, 2000).

However, environmental isolates from a plant rhizosphere

were found to be susceptible to concentrations as low as

0.1 mM (Abou-Shanab et al., 2007). Our screening of isolates

for tolerance to elevated levels of cadmium (above 0.1 mM)

revealed that after an initial lag phase, certain isolates either

from RCP plants or EPA plants that had been exposed to

cadmium were able to grow in elevated concentrations. We

expected that due to a history of contaminant exposure, RCP

isolates would bemore tolerant to Cd than those isolates from

EPA plants, and to some degree this was the case.

The phenomenon of increased metal tolerance with pre-

exposure has been described by others (Lehmann et al., 1999;

Dı́az-Raviña and Bååth, 2001). Possible explanations for this

initial lag phase followed by growth in cadmium could be due

to time or concentrations necessary for induction of metal

resistance efflux systems, or the time necessary for EPS

production, or expression of additional adaptations.

Cadmium tolerance may also vary based on whether the

bacterium is found in a planktonic state or attached to plant

roots. Bacteria attached to plant surfaces may be more metal

tolerant due to protection offered by the plant (Andrews and

Harris, 2000) or by their location within a biofilm. When

these bacteria are isolated from the plant, they may not be

able to withstand exposure to metal concentrations in the

medium.

Preadaptation to heavy metals does seem to play an

important role in determining whether a bacterium will be

able to tolerate higher concentrations of cadmium. In an

earlier study, we plated bacteria rinsed from plant roots,

either from EPA plants grown without cadmium for two

weeks, or grown with cadmium for two weeks, on cadmium-

containing medium. Bacterial growth on cadmium plates was

much greater from EPA plants grown with Cd than for EPA

plants grown with no Cd (Supp. Fig. 3).

Microbial isolates from EPA plants were most closely

related to members of the genera Flavobacterium, a common

aquatic bacterium also found in the rhizospheres of plants

such as young barley (Johansen et al., 2009); Microbacterium, of

which the species Microbacterium azadirachtae is known as

a plant-growth promoting bacterium isolated from seedlings

(Madhaiyan et al., 2010); Flectobacillus, isolated from eutrophic

lake water (Hahn et al., 1999); Limnobacter, a thiosulfate

oxidizer from a freshwater lake (Spring et al., 2001); and

Methylobacterium a plant growth promoting bacterium

(Madhaiyan et al., 2006). RCP isolates includedmembers of the

genera Variovorax, a rhizosphere bacterium (Belimov et al.,

2005); Methylophilus, a rhizosphere bacterium, a strain of

which was isolated from rice (Madhaiyan et al., 2009); Pseu-

domonas, Agrobacterium, Zoogloea, found in sewage treatment

water (Solisio et al., 1998); Duganella Zoogloea, (Hiraishi et al.,

1997), and Acidovorax, some species of which are plant path-

ogens (Hu and Young, 1998).

Several of the isolates from this study have been associated

with plants and metal contaminants. A strain of Methyl-

obacterium oryzae was found to reduce toxicity of Ni and Cd to

tomato plants, promoting plant growth and reducing metal

accumulation in plants while binding metal to bacterial cells

(Madhaiyan et al., 2007). Variovorax and Flavobacterium were

found to promote root growth and showed tolerance to

cadmium (Belimov et al., 2005; Piotrowska-Seget et al., 2005).

In our studies, Variovorax (RCP 9) did not show elevated

tolerance to cadmium, which could be due to metal concen-

trations tested, strain differences including the ability to form

EPS, medium composition, loss of resistance plasmids, or

a number of additional factors.

Treatments with the combination of isolates as inocula (all

RCP isolates, all EPA isolates, or a mixture of all isolates),

induced the greatest root elongation and least cadmium

phytoextraction, while the axenic plant control, along with

two of our isolates, showed the greatest cadmium accumu-

lation by the plant while the roots stayed shorter. We had

initially thought that the increased surface area of a longer

root would enable more bacterial biomass, and that more

bacterial biomass could adsorb more Cd thus protecting the

plant. Biomass measurements revealed that this was not the

case, and that the differences in metal update by the plants

are rather an effect of individual isolates. Synergistic inter-

actions between bacteria in plant growth promotion have

been described in numerous other studies (Anandham et al.,

2007; Domenech et al., 2006; Kannan and Sureendar, 2009),

and it is quite possible that in our study, synergistic interac-

tions amongst bacteria increase root elongation and also act

to keep cadmium out of plants.
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Some researchers (Belimov et al., 2001) found that inocu-

lating axenic plants with root growth promoting bacteria

increased root length but did not significantly increase the

uptake of metals, although they also did not see significant

inhibition of metal accumulation. They attributed the less-

ening of toxicity symptoms in plants to associated bacteria,

most likely due to bacterial inhibition of ethylene, a plant

hormone often produced under stress conditions that inhibit

root growth. Siderophore production was found in isolates

associated with fairly high plant cadmium accumulation but

not necessarily with increased root length. Other isolates

associated with high cadmium accumulation in plants and

increased root length did not produce siderophores, and so

siderophore production may not play a primary role in root

elongation. Certain siderophores, however, while associated

with iron chelation, may chelate zinc or cadmium (Mishra

et al., 2009) and so a role for siderophores in cadmium phy-

toextraction could be investigated further.

5. Conclusions

Over the period of time investigated, we demonstrated that

bacteria had an effect on cadmium accumulation in the EPA

strain of L. minor. Plants with longer roots, and more root

surface area for rhizoplane bacteria to adsorb Cd to their

surfaces, showed less Cd accumulation than those plantswith

shorter roots and no bacteria. Our findings indicate that plant-

growth promoting bacteria play a role in metal accumulation

by L. minor, but it may be more of a phytoprotective role than

initially thought. This research brings us one step closer to the

application of selective root associated bacteria as a strategy

to improve the metal tolerance of plants used in the phytor-

emediation of metal contaminants.
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