33 research outputs found

    Recurrent duplications of the annexin A1 gene (ANXA1) in autism spectrum disorders

    Get PDF
    Validating the potential pathogenicity of copy number variants (CNVs) identified in genome-wide studies of autism spectrum disorders (ASD) requires detailed assessment of case/control frequencies, inheritance patterns, clinical correlations, and functional impact. Here, we characterize a small recurrent duplication in the annexin A1 (ANXA1) gene, identified by the Autism Genome Project (AGP) study

    Convergent Functional Genomics of Schizophrenia: From Comprehensive Understanding to Genetic Risk Prediction

    Get PDF
    poster abstractWe have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study (GWAS) data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein coupled receptor signaling and cAMP- mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data is consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European-American (EA) and one African-American (AA), increasing overlap, reproducibility and consistency of findings from SNPs to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Lastly, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics, and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology

    The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism

    Get PDF
    Although multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E-09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E-23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E-04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions

    Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder

    Get PDF
    This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch

    Supplementary Material for: Effects of Lithium Monotherapy for Bipolar Disorder on Gene Expression in Peripheral Lymphocytes

    No full text
    <b><i>Background:</i></b> This study investigated the effect of lithium monotherapy on peripheral lymphocyte gene expression in bipolar disorder (BD). <b><i>Method:</i></b> Twenty-two medication-free bipolar subjects (11 hypomanic, 11 depressed) were started on lithium monotherapy. Closely matched healthy subjects (n = 15) were included as controls but did not receive treatment. Blood RNA samples were collected at baseline and after 2 and 8 weeks of treatment. RNA expression was measured using the Affymetrix GeneChip® Human Gene 1.0 ST Array followed by Ingenuity pathways analysis. The results for the contrast of weeks 2 and 8 were not significantly different and were combined. <b><i>Results:</i></b> In BD subjects, 56 genes showed significant (false discovery rate <0.1) expression changes from baseline; the effect sizes and directions for all of these were similar at weeks 2 and 8. Among these were immune-related genes (IL5RA, MOK, IFI6, and RFX2), purinergic receptors (P2RY14, P2RY2, and ADORA3) and signal transduction-related genes (CAMK1 and PIK3R6). Pathway and upstream regulator analysis also revealed that lithium altered several immune- and signal transduction-related functions. Differentially expressed genes did not correlate with week 8 clinical response, but other genes involved in protein synthesis and degradation did. <b><i>Conclusion:</i></b> Peripheral gene expression may serve as a biomarker of lithium effect

    Interaction between BDNF Val66Met and childhood trauma on adult's violent suicide attempt.

    No full text
    International audienceGenetic factors, specially those related to serotoninergic activities, and childhood maltreatment have both been implicated in suicidal behaviour (SB). However, little attention has been paid to the possible interaction between genes and childhood maltreatment in the comprehension of SB. Brain-derived neurotrophic factor (BDNF) plays an important role in the growth of serotoninergic neurons during childhood and therefore is a good candidate for studies on SB. Moreover, decreased levels of BDNF have been found in the prefrontal cortex of suicide victims. In our study we wanted to see if Val66Met (a BDNF functional single-nucleotide polymorphism) could moderate the effect of childhood maltreatment on the onset, number and violence of SB in a sample of 813 Caucasian suicide attempters. Childhood maltreatment was evaluated using the Childhood Trauma Questionnaire. We used a regression framework to test the interaction between Val66Met and childhood maltreatment. Childhood sexual abuse was associated with violent suicide attempts (SA) in adulthood only among Val/Val individuals and not among Val/Met or Met/Met individuals (P = 0.05). The severity of childhood maltreatment was significantly associated with a higher number of SA and with a younger age at onset of suicide attempt. This result suggests that Val66Met modulates the effect of childhood sexual abuse on the violence of SB. It is proposed that childhood sexual abuse elicits brain structural modifications through BDNF dysfunction and enhances the risk of violent SB in adulthood

    A linkage study of bipolar illness

    No full text
    BACKGROUND: Although genetic epidemiological studies of bipolar (BP) illness are consistent with a heritable component, inherited risk factors remain unknown. The goal of the present study is to describe the localization of BP susceptibility loci through linkage strategies, including a genome-wide search. METHODS: A linkage study of 22 BP families has been performed. These BP families include almost 400 persons, 173 of whom have been diagnosed as having BP I, schizoaffective, BP II with major depression, or recurrent unipolar illness. Using an autosomal dominant disease model with 85% or 50% age-dependent penetrance, and a recessive model with 85% penetrance, linkage analyses were performed assuming a narrow (BP and schizoaffective) or a broad (BP, schizoaffective, or unipolar) definition of the BP spectrum. Affected sibling pairs and affected pedigree member analyses were performed when positive lod scores were observed in multiple pedigrees. The present article describes linkage analysis of 310 DNA markers on chromosomes 1, 5p, 6, 8, 10q, 11q, and 12 to 18. RESULTS: None of the loci examined disclosed compelling evidence for linkage using lod score analyses. Model-independent analysis by multilocus affected pedigree member method in the pericentromeric chromosome 18 region disclosed statistically significant evidence (P < .0001) for a BP susceptibility gene in this region. Multilocus analysis by affected sibling pair method also disclosed evidence for linkage (P < .00008). CONCLUSIONS: Our results imply that a BP susceptibility gene exists near the centromere of chromosome 18. Confirmation of this finding (by independent investigators studying different pedigrees) has been published, suggesting that a valid BP disease linkage may have been discovered
    corecore