17 research outputs found
Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography
Raman micro-spectroscopy (RMS) is a non-invasive technique for imaging live cells in-vitro. However, obtaining quantitative molecular information from the Raman spectra is difficult because the intensity of a Raman band is proportional to the number of molecules in the sampled volume, which depends on the local molecular concentration and the thickness of the cell. In order to understand these effects, we combined RMS with atomic force microscopy (AFM), a technique that can measure accurately the thickness profile of the cells. Solution-based calibration models for RNA and albumin were developed to create quantitative maps of RNA and proteins in individual fixed cells. The maps were built by applying the solution-based calibration models, based on partial least square fitting (PLS), on raster-scan Raman maps, after accounting for the local cell height obtained from the AFM. We found that concentrations of RNA in the cytoplasm of mouse neuroprogenitor stem cells (NSCs) were as high as 256 mg/m, while proteins were distributed more uniformly and reaching concentrations as high as ~5012 mg/ml. The combined AFM-Raman datasets from fixed cells were also used to investigate potential improvements for normalization of Raman spectral maps. For all Raman map of fixed cells (n=10), we found a linear relationship between the scores corresponding to the first component (PC1) and cell height profile obtained by AFM. We used PC1 scores to reconstruct the relative height profiles of independent cells (n=10), and obtained correlation coefficients with AFM maps higher than 0.99. Using this normalization method, qualitative maps of RNA and protein were obtained concentrations for live NSCs. While this study demonstrates the potential of using AFM and RMS for measuring concentration maps for individual NSCs in-vitro, further studies are required to establish the robustness of the normalization method based on principal component analysis when comparing Raman spectra of cells with large morphological differences
Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging
This study investigates the temporal and spatial interchange of the aromatic amino acid phenylalanine (Phe) between human retinal pigment epithelial cell line (ARPE-19) and tachyzoites of the apicomplexan protozoan parasite Toxoplasma gondii (T. gondii). Stable isotope labelling by amino acids in cell culture (SILAC) is combined with Raman micro-spectroscopy to selectively monitor the incorporation of deuterium-labelled Phe into proteins in individual live tachyzoites. Our results show a very rapid uptake of L-Phe(D8) by the intracellular growing parasite. T. gondii tachyzoites are capable of extracting L-Phe(D8) from host cells as soon as it invades the cell. L-Phe(D8) from the host cell completely replaces the L-Phe within T. gondii tachyzoites 7–9 hours after infection. A quantitative model based on Raman spectra allowed an estimation of the exchange rate of Phe as 0.5–1.6 × 104 molecules/s. On the other hand, extracellular tachyzoites were not able to consume L-Phe(D8) after 24 hours of infection. These findings further our understanding of the amino acid trafficking between host cells and this strictly intracellular parasite. In particular, this study highlights new aspects of the metabolism of amino acid Phe operative during the interaction between T. gondii and its host cell
Visualizing the interaction of Acanthamoeba castellanii with human retinal epithelial cells by spontaneous Raman and CARS imaging
Improved understanding of the mechanism of nutrient’s uptake can enable targeted manipulation of nutrient sensing pathways in medically important pathogens to a greater degree than is currently possible. In this context, we present the use of spontaneous Raman micro-spectroscopy (RMS) and coherent anti-Stokes Raman spectroscopy (CARS) to visualise the time-dependent molecular interactions between the protozoan Acanthamoeba castellanii and host human cells. Human retinal pigment epithelial (ARPE-19) cells were prelabelled with deuterated Phe (L-Phe(D8)) and the uptake of the host derived L-Phe(D8) by A. castellanii trophozoites was measured by RMS for up to 48 hours post infection (hpi). This approach revealed a time-dependent uptake pattern of this essential amino acid by A. castellanii trophozoites during the first 24 hpi with complete enrichment with L-Phe(D8) detected in trophozoites at 48 hpi. In contrast, cell free A. castellanii trophozoites showed a modest uptake of only 16-18% L-Phe(D8) from L-Phe(D8)–supplemented culture medium after 3h, 24h and 48h hpi. CARS microscopy was successfully used to monitor the reprogramming of lipids within the trophozoites as they engaged with host cells. The methodology presented here provides new advances in the ability to analyze the kinetic of amino acid acquisition by A. castellanii from host cell and extracellular environment, and to visualize lipid reprogramming within the trophozoite
Stimulated Raman scattering microscopy: an emerging tool for drug discovery
Optical microscopy techniques have emerged as a cornerstone of biomedical research, capable of probing the cellular functions of a vast range of substrates, whilst being minimally invasive to the cells or tissues of interest. Incorporating biological imaging into the early stages of the drug discovery process can provide invaluable information about drug activity within complex disease models. Spontaneous Raman spectroscopy has been widely used as a platform for the study of cells and their components based on chemical composition; but slow acquisition rates, poor resolution and a lack of sensitivity have hampered further development. A new generation of stimulated Raman techniques is emerging which allows the imaging of cells, tissues and organisms at faster acquisition speeds, and with greater resolution and sensitivity than previously possible. This review focuses on the development of stimulated Raman scattering (SRS), and covers the use of bioorthogonal tags to enhance sample detection, and recent applications of both spontaneous Raman and SRS as novel imaging platforms to facilitate the drug discovery process