200 research outputs found

    DISTRIBUTION OF A CROSS-REACTIVE IDIOTYPIC SPECIFICITY IN INBRED STRAINS OF MICE

    Get PDF
    The expression of an idiotype characteristic of anti-p-azophenylarsonate antibodies of all A/J mice was explored in F1 progeny, in other inbred strains, and in congenic mice. Of the strains tested only those closely related to A/J produced antibodies with the cross-reactive idiotype (CRI). None of the mice synthesized intermediate levels of CRI. No relationship between H-2 type and idiotype was noted. Congenic mice with a strain A background but a different H-2 type produced CRI in amounts quantitatively equivalent to those of strain A mice. Conversely, the presence of the H-2 genotype of strain A on an unrelated background was not associated with the formation of CRI. Nearly all F1 progeny of strain A mice formed CRI, indicating that failure of the other (non-A) parental strain to produce CRI is not attributable to the presence of a gene controlling the synthesis of a suppressor of CRI. NZB mice, which have the same heavy chain allotype as strain A, but are unrelated in origin, failed to produce CRI, although allotype has been shown to be linked to idiotype in congenic strains

    REQUIREMENTS FOR PROLONGED SUPPRESSION OF AN IDIOTYPIC SPECIFICITY IN ADULT MICE

    Get PDF
    The appearance of an idiotypic specificity, present in anti-p-azophenylarsonate (anti-Ar) antibodies of all immunized A/J mice, ran be suppressed in adult mice by prior administration of an IgG fraction of rabbit antiidiotypic (anti-D) antiserum; anti-Ar antibodies arise but are of different idiotype. Prolonged suppression was observed in earlier experiments, but antigen was first administered to adult mice only 2 wk or 9 wk after anti-D antibodies; subsequent escape from idiotypic suppression could have been masked by the capture of antigen by large numbers of memory cells having receptors of a different idiotype. In the present experiments antigen was first administered at intervals up to 22 wk after the antiidiotypic antibody. Suppression was maintained for 6 wk in all mice and for 5 mo in about half the mice tested. It thus appears that suppression of idiotype is less reversible if antigen is administered soon after the antiidiotypic antibody. The data suggest that escape from suppression is attributable to the generation of new precursor cells rather than to reactivation of suppressed cells. The minimum dosage of antiidiotypic IgG required for effective suppression was about 2 mg. The subcutaneous or intraperitoneal routes of inoculation of antiidiotypic IgG were equally effective. When antiidiotypic antibody was administered 3 days after antigen no suppressive effects were observed. There was partial suppression when antiidiotypic antibody was injected on the same day as the antigen. Fab' and F(ab')2 fragments of antiidiotypic IgG had no suppressive effect. Quantitative measurements revealed no significant differences among control and suppressed mice with respect to total concentration of precipitable anti-Ar antibodies produced

    EVIDENCE FOR THE LINKAGE OF THE IGCH LOCUS TO A GENE CONTROLLING THE IDIOTYPIC SPECIFICITY OF ANTI-p-AZOPHENYLARSONATE ANTIBODIES IN STRAIN A MICE

    Get PDF
    Anti-p-azophenylarsonate (anti-Ar) antibodies elicited in all strain A/J mice tested share one or more idiotypic specificities. These specificities are also found in the anti-Ar antibodies of mice of the closely related strain, AL/N, but not in those of BALB/c mice. Anti-Ar antibodies were elicited in congenic mice in which the IgCH locus of AL/N mice, which controls allotypic markers in the constant regions of heavy chains, had been introgressively backcrossed for nine generations onto a BALB/c background; the mice were then rendered homozygous for the AL/N allotypic determinant. On the average, these antibodies were quantitatively equivalent, with respect to content of the cross-reactive idiotype, to those of AL/N mice. This indicates that the gene controlling the idiotype is closely linked to the IgCH locus. Since idiotype must be a function of V region sequences, the results suggest close linkage of VH and CH genes. The cross-reactive idiotype was found in nearly all F1 mice (C57/BL x A/J or BALB/c x A/J) tested

    SUPPRESSION OF IDIOTYPIC SPECIFICITIES IN ADULT MICE BY ADMINISTRATION OF ANTIIDIOTYPIC ANTIBODY

    Get PDF
    It has previously been shown that there are extensive idiotypic cross-reactions among antiphenylarsonate antibodies of A/J mice. The present work indicates that administration, into normal, adult A/J mice, of rabbit antiidiotypic antibody directed to A/J antiphenylarsonate antibody suppresses almost completely the subsequent production of antibody of the corresponding idiotype. No effect was noted on the formation of antibodies to the protein carrier or of antiphenylarsonate antibody of a different idiotype. The data are consistent with central suppression of production of the idiotypic antibody mediated through interaction with immunoglobulin receptors on lymphocytes

    Affinity Inequality among Serum Antibodies That Originate in Lymphoid Germinal Centers

    Get PDF
    Upon natural infection with pathogens or vaccination, antibodies are produced by a process called affinity maturation. As affinity maturation ensues, average affinity values between an antibody and ligand increase with time. Purified antibodies isolated from serum are invariably heterogeneous with respect to their affinity for the ligands they bind, whether macromolecular antigens or haptens (low molecular weight approximations of epitopes on antigens). However, less is known about how the extent of this heterogeneity evolves with time during affinity maturation. To shed light on this issue, we have taken advantage of previously published data from Eisen and Siskind (1964). Using the ratio of the strongest to the weakest binding subsets as a metric of heterogeneity (or affinity inequality), we analyzed antibodies isolated from individual serum samples. The ratios were initially as high as 50-fold, and decreased over a few weeks after a single injection of small antigen doses to around unity. This decrease in the effective heterogeneity of antibody affinities with time is consistent with Darwinian evolution in the strong selection limit. By contrast, neither the average affinity nor the heterogeneity evolves much with time for high doses of antigen, as competition between clones of the same affinity is minimal.Ragon Institute of MGH, MIT and HarvardSamsung Scholarship FoundationNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374

    Perspectives on Immunoglobulins in Colostrum and Milk

    Get PDF
    Immunoglobulins form an important component of the immunological activity found in milk and colostrum. They are central to the immunological link that occurs when the mother transfers passive immunity to the offspring. The mechanism of transfer varies among mammalian species. Cattle provide a readily available immune rich colostrum and milk in large quantities, making those secretions important potential sources of immune products that may benefit humans. Immune milk is a term used to describe a range of products of the bovine mammary gland that have been tested against several human diseases. The use of colostrum or milk as a source of immunoglobulins, whether intended for the neonate of the species producing the secretion or for a different species, can be viewed in the context of the types of immunoglobulins in the secretion, the mechanisms by which the immunoglobulins are secreted, and the mechanisms by which the neonate or adult consuming the milk then gains immunological benefit. The stability of immunoglobulins as they undergo processing in the milk, or undergo digestion in the intestine, is an additional consideration for evaluating the value of milk immunoglobulins. This review summarizes the fundamental knowledge of immunoglobulins found in colostrum, milk, and immune milk

    Site-Specifically Labeled Immunoconjugates for Molecular Imaging—Part 1: Cysteine Residues and Glycans

    Get PDF
    Due to their remarkable selectivity and specificity for cancer biomarkers, immunoconjugates have emerged as extremely promising vectors for the delivery of diagnostic radioisotopes and fluorophores to malignant tissues. Paradoxically, however, these tools for precision medicine are synthesized in a remarkably imprecise way. Indeed, the vast majority of immunoconjugates are created via the random conjugation of bifunctional probes (e.g., DOTA-NCS) to amino acids within the antibody (e.g., lysines). Yet antibodies have multiple copies of these residues throughout their macromolecular structure, making control over the location of the conjugation reaction impossible. This lack of site specificity can lead to the formation of poorly defined, heterogeneous immunoconjugates with suboptimal in vivo behavior. Over the past decade, interest in the synthesis and development of site-specifically labeled immunoconjugates—both antibody-drug conjugates as well as constructs for in vivo imaging—has increased dramatically, and a number of reports have suggested that these better defined, more homogeneous constructs exhibit improved performance in vivo compared to their randomly modified cousins. In this two-part review, we seek to provide an overview of the various methods that have been developed to create site-specifically modified immunoconjugates for positron emission tomography, single photon emission computed tomography, and fluorescence imaging. We will begin with an introduction to the structure of antibodies and antibody fragments. This is followed by the core of the work: sections detailing the four different approaches to site-specific modification strategies based on cysteine residues, glycans, peptide tags, and unnatural amino acids. These discussions will be divided into two installments: cysteine residues and glycans will be detailed in Part 1 of the review, while peptide tags and unnatural amino acids will be addressed in Part 2. Ultimately, we sincerely hope that this review fosters interest and enthusiasm for site-specific immunoconjugates within the nuclear medicine and molecular imaging communities
    corecore