13 research outputs found

    Multi-Site N-glycan mapping study 1: Capillary electrophoresis – laser induced fluorescence

    Get PDF
    An international team that included 20 independent laboratories from biopharmaceutical companies, universities, analytical contract laboratories and national authorities in the United States, Europe and Asia was formed to evaluate the reproducibility of sample preparation and analysis of N-glycans using capillary electrophoresis of 8-aminopyrene-1,3,6-trisulfonic acid (APTS)-labeled glycans with laser induced fluorescence (CE-LIF) detection (16 sites) and ultra highperformance liquid chromatography (UHPLC, 12 sites; results to be reported in a subsequent publication). All participants used the same lot of chemicals, samples, reagents, and columns/capillaries to run their assays. Migration time, peak area and peak area percent values were determined for all peaks with >0.1% peak area. Our results demonstrated low variability and high reproducibility, both, within any given site as well across all sites, which indicates that a standard N-glycan analysis platform appropriate for general use (clone selection, process development, lot release, etc.) within the industry can be established

    Development of a thin section device for space exploration: Rock cutting mechanism

    No full text
    We have developed a rock cutting mechanism for in situ planetary exploration based on abrasive diamond impregnated wire. Performance characteristics of the rock cutter, including cutting rate on several rock types, cutting surface lifetime, and cut rock surface finish are presented. The rock cutter was developed as part of a broader effort to develop an in situ automated rock thin section (IS-ARTS) instrument. The objective of IS-ARTS was to develop an instrument capable of producing petrographic rock thin sections on a planetary science spacecraft. The rock cutting mechanism may also be useful to other planetary science missions with in situ instruments in which sub-sampling and rock surface preparation are necessary. © 2012 COSPAR. Published by Elsevier Ltd. All rights reserved

    Conservation of grassland leafhoppers: A brief review

    No full text
    The leafhoppers, planthoppers and their allies (collectively known as the Auchenorrhyncha) are presented as a group of insects that are highly appropriate for studying grassland ecology and conservation, evaluating the conservation status of sites and monitoring environmental and habitat change. Semi-natural grasslands typically support dense populations and a wide range of species with diverse ecological strategies. Their numerical dominance in many grasslands means that they have considerable functional significance, both as herbivores and as prey for higher trophic levels. Population and assemblage studies are supported by good ecological knowledge about most species and modern identification keys. Hitherto, most studies have focused on the composition and structure of assemblages and how they are affected by conservation management. However, grasslands support many rare species with small and fragmented populations which deserve conservation attention in their own right, and recent work has started to reflect this. The effects of management on the composition and structure of grassland leafhopper populations and assemblages are described and an assessment is given of the main threats facing individual species and overall diversity. There is a need to synthesise the scattered literature on grassland leafhoppers, to provide a model for how the composition and structure of populations and assemblages respond to major environmental and anthropogenic gradients across large biogeographic areas. Such an analysis could help predict the impact of likely future changes in land use and climate

    Molecular techniques for the personalised management of patients with chronic myeloid leukaemia

    No full text

    Landscape of Next-Generation Sequencing Technologies

    No full text
    corecore