63 research outputs found

    Multifunctional hybrid silica nanoparticles based on [Mo₆Br₁₄]²⁻ phosphorescent nanosized clusters, magnetic γ-Fe₂O₃ and plasmonic gold nanoparticles

    No full text
    International audienceWe report on the synthesis, characterization and photophysical study of new luminescent and magnetic hybrid silica nanoparticles. Our method is based on the co-encapsulation of single maghemite γ-Fe2O3 nanoparticles and luminescent molybdenum cluster units [Mo6Br(i)8Br(a)6](2-) through a water-in-oil (W/O) microemulsion technique. The as-prepared core-shell [Cs2Mo6Br14-γFe2O3]@SiO2 nanoparticles (45-53 nm) possess a single magnetic core (6, 10.5 or 15 nm) and the cluster units are dispersed in the entire volume of the silica sphere. The [Cs2Mo6Br14-γFe2O3]@SiO2 nanoparticles have a perfect spherical shape with a good monodispersity and they display red and near-infrared (NIR) emission in water under UV excitation, whose intensity depends on the magnetic core size. The hybrid nanoparticles have been characterized by transmission electron microscopy (TEM), high annular angular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis-NIR spectroscopy and magnetometer SQUID analysis. Small gold nanoparticles were successfully nucleated at the surface of the hybrid silica nanoparticles in order to add plasmonic properties

    A single epidermal stem cell strategy for safe ex vivo gene therapy.

    Get PDF
    There is a widespread agreement from patient and professional organisations alike that the safety of stem cell therapeutics is of paramount importance, particularly for ex vivo autologous gene therapy. Yet current technology makes it difficult to thoroughly evaluate the behaviour of genetically corrected stem cells before they are transplanted. To address this, we have developed a strategy that permits transplantation of a clonal population of genetically corrected autologous stem cells that meet stringent selection criteria and the principle of precaution. As a proof of concept, we have stably transduced epidermal stem cells (holoclones) obtained from a patient suffering from recessive dystrophic epidermolysis bullosa. Holoclones were infected with self-inactivating retroviruses bearing a COL7A1 cDNA and cloned before the progeny of individual stem cells were characterised using a number of criteria. Clonal analysis revealed a great deal of heterogeneity among transduced stem cells in their capacity to produce functional type VII collagen (COLVII). Selected transduced stem cells transplanted onto immunodeficient mice regenerated a non-blistering epidermis for months and produced a functional COLVII. Safety was assessed by determining the sites of proviral integration, rearrangements and hit genes and by whole-genome sequencing. The progeny of the selected stem cells also had a diploid karyotype, was not tumorigenic and did not disseminate after long-term transplantation onto immunodeficient mice. In conclusion, a clonal strategy is a powerful and efficient means of by-passing the heterogeneity of a transduced stem cell population. It guarantees a safe and homogenous medicinal product, fulfilling the principle of precaution and the requirements of regulatory affairs. Furthermore, a clonal strategy makes it possible to envision exciting gene-editing technologies like zinc finger nucleases, TALENs and homologous recombination for next-generation gene therapy

    Minocycline-induced hypersensitivity syndrome presenting with meningitis and brain edema: a case report

    Get PDF
    <p/> <p>Background</p> <p>Hypersentivity Syndrome (HS) may be a life-threatening condition. It frequently presents with fever, rash, eosinophilia and systemic manifestations. Mortality can be as high as 10% and is primarily due to hepatic failure. We describe what we believe to be the first case of minocycline-induced HS with accompanying lymphocytic meningitis and cerebral edema reported in the literature.</p> <p>Case presentation</p> <p>A 31-year-old HIV-positive female of African origin presented with acute fever, lymphocytic meningitis, brain edema, rash, eosinophilia, and cytolytic hepatitis. She had been started on minocycline for inflammatory acne 21 days prior to the onset of symptoms. HS was diagnosed clinically and after exclusion of infectious causes. Minocycline was withdrawn and steroids were administered from the second day after presentation because of the severity of the symptoms. All signs resolved by the seventh day and steroids were tailed off over a period of 8 months.</p> <p>Conclusion</p> <p>Clinicians should maintain a high index of suspicion for serious adverse reactions to minocycline including lymphocytic meningitis and cerebral edema among HIV-positive patients, especially if they are of African origin. Safer alternatives should be considered for treatment of acne vulgaris. Early recognition of the symptoms and prompt withdrawal of the drug are important to improve the outcome.</p

    The SuperCam Remote Sensing Instrument Suite for Mars 2020

    No full text
    International audienceThe Mars 2020 rover, essentially a structural twin of MSL, is being built to a) characterize the geology and history of a new landing site on Mars, b) find and characterize ancient habitable environments, c) cache samples for eventual return to Earth, and d) demonstrate in-situ production of oxygen needed for human exploration. Remote-sensing instrumentation is needed to support the first three of these goals [1]. The SuperCam instrument meets these needs with a range of instrumentation including the highest-resolution remote imaging on the rover, two different techniques for determining mineralogy , and one technique to provide elemental compositions. All of these techniques are co-boresighted, providing rapid comprehensive characterization. In addition, for targets within 7 meters of the rover the laser shock waves brush away the dust, providing cleaner surfaces for analysis. SuperCam will use an advanced version of the AEGIS robotic target selection software

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Understanding engraftment of cultured epidermal stem cells

    No full text
    The epidermis and its appendages protect our body from environmental hazards. Cells generated in the basal layer continuously replace the terminally differentiated keratinocytes that are shed off the epidermal surface. Long-term renewal depends on specific tissue cells, called stem cells. The epidermis can efficiently repair itself when wounded, thanks to the proliferation, migration and differentiation of the stem cells and their progeny. In extensive full-thickness burns, restoration of the epidermal barrier can only be achieved by means of autologous skin grafts. Cell therapy using cultured epithelium autografts (CEA) has been part of the therapeutic arsenal since the early eighties (Gallico et al., 1984; O'Connor et al., 1981) and it has saved the life of many patients worldwide. Paradoxically, little is known on the behavior of the transplanted stem cells and engraftment has remained variable. Unpublished data from our laboratory have shown that the number of stem cells decrease rapidly in transplanted CEA in humans. This further highlights the necessity to thoroughly comprehend the cellular and molecular mechanisms of stem cell engraftment. Several fundamental questions must be addressed, for example: 1) By which mechanisms do stem cells adjust to the stress of transplantation? 2) How many stem cells are required for long-term renewal of the regenerated epidermis? 3) Can one manipulate the niche? To thoroughly investigate the mechanisms of engraftment, it is critical to develop a predictable animal model since it is difficult to experiment on human. We have chosen the pig as a large animal model because clinical procedures used for CEA transplantation cannot be recapitulated in laboratory animals. Firstly, we have demonstrated that pig and human skin share many features. In particular, the skin of the pig contains keratinocyte stem cells that can be characterized by clonal analysis using the same criteria as in the human (holoclone, meroclone, paraclone). Secondly, we have reproducibly produced CEA, including some made from the progeny of a single EGFP-labeled keratinocyte stem cell. Thirdly, we have recapitulated in the pig all surgical procedures used to transplanting CEA in humans. Fourthly, CEA engraftment has been systematically investigated by histology, immunochemistry and clonal analysis. Fifthly, we have demonstrated that the number of stem cells rapidly decreases following CEA transplantation and that there is little apoptosis in transplanted CEA, which suggests that stem cells are rather lost through terminal differentiation. Collectively our results demonstrate that the pig is the best available model system to investigate the mechanisms that govern stem cell engraftment. Superior engraftment may be achieved by improving the grafting bed, by designing smart matrices to better mimic the niche, or by manipulating stem cell behavior. A better comprehension of stem cell engraftment will certainly benefit patients suffering from large burns and those with disabling skin diseases (e.g. dystrophic epidermolysis bullosa). It will also profit stem cell therapy at large since optimal engraftment is also needed for hematopoïetic, muscle and neural stem cells

    Exploring epidermal stem cell engraftment

    No full text
    Objective: Cultured autologous epidermal stem cells are used to treat extensively burned patients. However, engraftment is variable and it is fundamental to know 1- how many stem cells survive the stress of transplantation and 2- how many stem cells are needed for long-term self-renewal of the regenerated epidermis. Therefore, we have recapitulated the transplantation of autologous cultured epidermal stem cells in the minipig to investigate the cellular and molecular mechanisms involved in engraftment. Methods: Pig keratinocytes were cultivated according to the protocol used in human epidermal cell therapy. Human surgical procedures were adapted to the pig. Engraftment was evaluated clinically and by histology. The presence of epidermal stem cells was evaluated by clonal analysis. The presence of dividing or apoptotic cells was revealed by Ki67 and cleaved-caspase3 immunostaining respectively. Results: The skin of the pig closely resembles human skin and contains clonogenic keratinocytes that can be serially cultivated, cloned or transduced with a gene encoding GFP (Green Fluorescent Protein) by means of recombinant retroviral vectors. Cultured epidermal autografts can be successfully transplanted and their behavior recapitulate our observations in the human. Our experiments confirm that the number of epidermal stem cells rapidly decreases following transplantation. Most importantly, the regenerated epithelium contains dividing cells but little apoptotic cells, thus indicating that transplanted stem cells are pushed toward differentiation in response to the transplantation procedure. Conclusions: The minipig model is extremely useful to investigate stem cell fate during transplantation in human. Understanding engraftment is crucial to improve cell therapy and to design a more efficient generation of epidermal stem cell based products

    Iterative Receiver Architectures for Downlink MIMO CDMA Evolution

    No full text
    International audienceThis paper investigates the combination of spatial multiplexing and overloading as an evolution the UMTS-HSDPA (High Speed Downlink Packet Access) toward very high spectral efficiencies. The base station employs single-carrier space-time bit-interleaved coded modulations with linear precoding for each user. From an information-theoretic point of view, this scheme is potentially capacity achieving but puts high stakes on the receiver complexity. Channel estimation is made particularly difficult by the superimposition of pilot symbols and data. Indeed, the classical channel estimation method based on matched filtering and accumulation clearly fails to give satisfactory performance in a spatial multiplexing and overloading context. Thus, we propose a sophisticated iterative receiver which includes channel estimation, MMSE-based chip-equalization and MMSE-based mulituser detection together with decoding of the turbo-code. Simultaneous downlink transmission to several users is investigated in this paper which brings out the overloading flexibility in terms of Space-Time Modulation and Coding Scheme (ST-MCS) design and radio resource allocation. Two scenarios are considered for the intracell interference: either the spreading codes and the modulation of the interfering users are known or no knowledge of the interfering signals is available at the receiver whatsoever
    corecore