2,558 research outputs found

    Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable.

    Get PDF
    International audienceThe potential of microalgae as a source of biofuels and as a technological solution for CO2 fixation is subject to intense academic and industrial research. In the perspective of setting up massive cultures, the management of large quantities of residual biomass and the high amounts of fertilizers must be considered. Anaerobic digestion is a key process that can solve this waste issue as well as the economical and energetic balance of such a promising technology. Indeed, the conversion of algal biomass after lipid extraction into methane is a process that can recover more energy than the energy from the cell lipids. Three main bottlenecks are identified to digest microalgae. First, the biodegradability of microalgae can be low depending on both the biochemical composition and the nature of the cell wall. Then, the high cellular protein content results in ammonia release which can lead to potential toxicity. Finally, the presence of sodium for marine species can also affect the digester performance. Physico-chemical pretreatment, co-digestion, or control of gross composition are strategies that can significantly and efficiently increase the conversion yield of the algal organic matter into methane. When the cell lipid content does not exceed 40%, anaerobic digestion of the whole biomass appears to be the optimal strategy on an energy balance basis, for the energetic recovery of cell biomass. Lastly, the ability of these CO2 consuming microalgae to purify biogas and concentrate methane is discussed

    Enhanced Fermentative Hydrogen Production from Food Waste in Continuous Reactor after Butyric Acid Treatment

    Get PDF
    End-product accumulation during dark fermentation leads to process instability and hydrogen production inhibition. To overcome this constraint, microbial community adaptation to butyric acid can induce acid tolerance and thus enhance the hydrogen yields; however, adaptation and selection of appropriate microbial communities remains uncertain when dealing with complex substrates in a continuous fermentation mode. To address this question, a reactor fed in continuous mode with food waste (organic loading rate of 60 gVS·L·d−1; 12 h hydraulic retention time) was first stressed for 48 h with increasing concentrations of butyric acid (up to 8.7 g·L−1). Performances were compared with a control reactor (unstressed) for 13 days. During 6 days in a steady-state, the pre-stressed reactor produced 2.2 ± 0.2 LH2·L·d−1, which was 48% higher than in the control reactor (1.5 ± 0.2 LH2·L·d−1). The pretreatment also affected the metabolites’ distribution. The pre-stressed reactor presented a higher production of butyric acid (+44%) achieving up to 3.8 ± 0.3 g·L−1, a lower production of lactic acid (−56%), and an enhancement of substrate conversion (+9%). The performance improvement was attributed to the promotion of Clostridium guangxiense, a hydrogen -producer, with a relative abundance increasing from 22% in the unstressed reactor to 52% in the stressed reactor

    Long-term continuous production of H2 in a microbial electrolysis cell (MEC) treating saline wastewater

    Get PDF
    A biofilm-based 4 L two chamber microbial electrolysis cell (MEC) was continuously fed with acetate under saline conditions (35 g/L NaCl) for more than 100 days. The MEC produced a biogas highly enriched in H2 (≥90%). Both current (10.6 ± 0.2 A/m2Anode or 199.1 ± 4.0 A/m3MEC) and H2 production (201.1 ± 7.5 LH2/m2Cathode·d or 0.9 ± 0.0 m3H2/m3MEC·d) rates were highly significant when considering the saline operating conditions. A microbial analysis revealed an important enrichment in the anodic biofilm with five main bacterial groups: 44% Proteobacteria, 32% Bacteroidetes, 18% Firmicutes and 5% Spirochaetes and 1% Actinobacteria. Of special interest is the emergence within the Proteobacteria phylum of the recently described halophilic anode-respiring bacteria Geoalkalibacter (unk. species), with a relative abundance up to 14%. These results provide for the first time a noteworthy alternative for the treatment of saline effluents and continuous production of H2

    Patterns of paediatric end-of-life care: a chart review across different care settings in Switzerland

    Full text link
    BACKGROUND: Paediatric end-of-life care is challenging and requires a high level of professional expertise. It is important that healthcare teams have a thorough understanding of paediatric subspecialties and related knowledge of disease-specific aspects of paediatric end-of-life care. The aim of this study was to comprehensively describe, explore and compare current practices in paediatric end-of-life care in four distinct diagnostic groups across healthcare settings including all relevant levels of healthcare providers in Switzerland. METHODS: In this nationwide retrospective chart review study, data from paediatric patients who died in the years 2011 or 2012 due to a cardiac, neurological or oncological condition, or during the neonatal period were collected in 13 hospitals, two long-term institutions and 10 community-based healthcare service providers throughout Switzerland. RESULTS: Ninety-three (62%) of the 149 reviewed patients died in intensive care units, 78 (84%) of them following withdrawal of life-sustaining treatment. Reliance on invasive medical interventions was prevalent, and the use of medication was high, with a median count of 12 different drugs during the last week of life. Patients experienced an average number of 6.42 symptoms. The prevalence of various types of symptoms differed significantly among the four diagnostic groups. Overall, our study patients stayed in the hospital for a median of six days during their last four weeks of life. Seventy-two patients (48%) stayed at home for at least one day and only half of those received community-based healthcare. CONCLUSIONS: The study provides a wide-ranging overview of current end-of-life care practices in a real-life setting of different healthcare providers. The inclusion of patients with all major diagnoses leading to disease- and prematurity-related childhood deaths, as well as comparisons across the diagnostic groups, provides additional insight and understanding for healthcare professionals. The provision of specialised palliative and end-of-life care services in Switzerland, including the capacity of community healthcare services, need to be expanded to meet the specific needs of seriously ill children and their families

    Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators

    Get PDF
    In this study, microbial fuel cells (MFCs) – operated with novel cation- and anion-exchange membranes, in particular AN-VPA 60 (CEM) and PSEBS DABCO (AEM) – were assessed comparatively with Nafion proton exchange membrane (PEM). The process characterization involved versatile electrochemical (polarization, electrochemical impedance spectroscopy – EIS, cyclic voltammetry – CV) and biological (microbial structure analysis) methods in order to reveal the influence of membrane-type during start-up. In fact, the use of AEM led to 2-5 times higher energy yields than CEM and PEM and the lowest MFC internal resistance (148 ± 17 Ω) by the end of start-up. Regardless of the membrane-type, Geobacter was dominantly enriched on all anodes. Besides, CV and EIS measurements implied higher anode surface coverage of redox compounds for MFCs and lower membrane resistance with AEM, respectively. As a result, AEM based on PSEBS DABCO could be found as a promising material to substitute Nafion

    Inhibition of DNA methylation promotes breast tumor sensitivity to netrin-1 interference

    Get PDF
    In a number of human cancers, NTN1 upregulation inhibits apoptosis induced by its so-called dependence receptors DCC and UNC5H, thus promoting tumor progression. In other cancers however, the selective inhibition of this dependence receptor death pathway relies on the silencing of pro-apoptotic effector proteins. We show here that a substantial fraction of human breast tumors exhibits simultaneous DNA methylation-dependent loss of expression of NTN1 and of DAPK1, a serine threonine kinase known to transduce the netrin-1 dependence receptor pro-apoptotic pathway. The inhibition of DNA methylation by drugs such as decitabine restores the expression of both NTN1 and DAPK1 in netrin-1-low cancer cells. Furthermore, a combination of decitabine with NTN1 silencing strategies or with an anti-netrin-1 neutralizing antibody potentiates tumor cell death and efficiently blocks tumor growth in different animal models. Thus, combining DNA methylation inhibitors with netrin-1 neutralizing agents may be a valuable strategy for combating cancer

    Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments

    Get PDF
    Homologous recombination is a fundamental process enabling the repair of double-strand breaks with a high degree of fidelity. In prokaryotes, it is carried out by RecA nucleofilaments formed on single-stranded DNA (ssDNA). These filaments incorporate genomic sequences that are homologous to the ssDNA and exchange the homologous strands. Due to the highly dynamic character of this process and its rapid propagation along the filament, the sequence recognition and strand exchange mechanism remains unknown at the structural level. The recently published structure of the RecA/DNA filament active for recombination (Chen et al., Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structure, Nature 2008, 453, 489) provides a starting point for new exploration of the system. Here, we investigate the possible geometries of association of the early encounter complex between RecA/ssDNA filament and double-stranded DNA (dsDNA). Due to the huge size of the system and its dense packing, we use a reduced representation for protein and DNA together with state-of-the-art molecular modeling methods, including systematic docking and virtual reality simulations. The results indicate that it is possible for the double-stranded DNA to access the RecA-bound ssDNA while initially retaining its Watson–Crick pairing. They emphasize the importance of RecA L2 loop mobility for both recognition and strand exchange

    Design and Production of Detector Modules for the LHCb Silicon Tracker

    Get PDF
    The LHCb Silicon Tracker will cover a sensitive surface of about 12 m^2 with silicon micro-strip detectors. The production of detector modules is currently coming close to its conclusion. In this paper, the design of the detector modules, the main module production steps, and the module quality assurance programme are described. Selected results from the quality assurance are shown and first lessons are drawn from the experience gained during module production. Presented at the 6th International ``Hiroshima'' Symposium on the Development and Application of Semiconductor Tracking Detectors, Carmel, California, September 11-15, 2006; proceedings submitted for publication in Nucl. Instr. and Meth.~

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE
    • …
    corecore