24 research outputs found

    Altered interactions between stem-loop IV within the 5′ noncoding region of coxsackievirus RNA and poly(rC) binding protein 2: Effects on IRES-mediated translation and viral infectivity

    Get PDF
    AbstractCoxsackievirus B3 (CVB3) is a causative agent of viral myocarditis, meningitis, pancreatitis, and encephalitis. Much of what is known about the coxsackievirus intracellular replication cycle is based on the information already known from a well-studied and closely related virus, poliovirus. Like that of poliovirus, the 5′ noncoding region (5′ NCR) of CVB3 genomic RNA contains secondary structures that function in both viral RNA replication and cap-independent translation initiation. For poliovirus IRES-mediated translation, the interaction of the cellular protein PCBP2 with a major secondary structure element (stem-loop IV) is required for gene expression. Previously, the complete secondary structure of the coxsackievirus 5′ NCR was determined by chemical structure probing and overall, many of the RNA secondary structures bear significant similarity to those of poliovirus; however, the functions of the coxsackievirus IRES stem-loop structures have not been determined. Here we report that a CVB3 RNA secondary structure, stem-loop IV, folds similarly to poliovirus stem-loop IV and like its enterovirus counterpart, coxsackievirus stem-loop IV interacts with PCBP2. We used RNase foot-printing to identify RNA sequences protected following PCBP2 binding to coxsackievirus stem-loop IV. When nucleotide substitutions were separately engineered at two sites in coxsackievirus stem-loop IV to reduce PCBP2 binding, inhibition of IRES-mediated translation was observed. Both of these nucleotide substitutions were engineered into full-length CVB3 RNA and upon transfection into HeLa cells, the specific infectivities of both constructs were reduced and the recovered viruses displayed small-plaque phenotypes and slower growth kinetics compared to wild type virus

    Mutations in the Poliovirus 3CD Proteinase S1-Specificity Pocket Affect Substrate Recognition and RNA Binding

    Get PDF
    AbstractSequence and structure comparisons with homologous trypsin-like serine proteases have predicted the S1-specificity pocket in picornavirus 3C proteinases. In this study, we examine the putative roles of such residues in poliovirus 3C substrate recognition. Single amino acid substitutions at 3C residues Thr-142, His-161, Gly-163, Gly-164, and Ala-172 were introduced into near full-length poliovirus cDNAs, and protein processing was examined in the context of authentic 3Cciscleavage activity. Our data are consistent with residues Thr-142, His-161, Gly-163, and Gly-164 acting as important determinants of 3C substrate specificity and support published models of 3C protein structure. Anin vivoanalysis of mutant viruses containing individual amino acid substitutions at 3C residues Thr-142 and Ala-172 suggests that such residues are important determinants for viral RNA replication. In addition, bacterially expressed, recombinant 3CD polypeptides containing amino acid substitutions at Thr-142 and Ala-172 show altered RNA binding properties in mobility shift assays that use a synthetic RNA corresponding to the poliovirus 5′-terminal sequences

    Addressing climate change with behavioral science:A global intervention tournament in 63 countries

    Get PDF

    Mapping subnational HIV mortality in six Latin American countries with incomplete vital registration systems

    Get PDF
    BackgroundHuman immunodeficiency virus (HIV) remains a public health priority in Latin America. While the burden of HIV is historically concentrated in urban areas and high-risk groups, subnational estimates that cover multiple countries and years are missing. This paucity is partially due to incomplete vital registration (VR) systems and statistical challenges related to estimating mortality rates in areas with low numbers of HIV deaths. In this analysis, we address this gap and provide novel estimates of the HIV mortality rate and the number of HIV deaths by age group, sex, and municipality in Brazil, Colombia, Costa Rica, Ecuador, Guatemala, and Mexico.MethodsWe performed an ecological study using VR data ranging from 2000 to 2017, dependent on individual country data availability. We modeled HIV mortality using a Bayesian spatially explicit mixed-effects regression model that incorporates prior information on VR completeness. We calibrated our results to the Global Burden of Disease Study 2017.ResultsAll countries displayed over a 40-fold difference in HIV mortality between municipalities with the highest and lowest age-standardized HIV mortality rate in the last year of study for men, and over a 20-fold difference for women. Despite decreases in national HIV mortality in all countries-apart from Ecuador-across the period of study, we found broad variation in relative changes in HIV mortality at the municipality level and increasing relative inequality over time in all countries. In all six countries included in this analysis, 50% or more HIV deaths were concentrated in fewer than 10% of municipalities in the latest year of study. In addition, national age patterns reflected shifts in mortality to older age groups-the median age group among decedents ranged from 30 to 45years of age at the municipality level in Brazil, Colombia, and Mexico in 2017.ConclusionsOur subnational estimates of HIV mortality revealed significant spatial variation and diverging local trends in HIV mortality over time and by age. This analysis provides a framework for incorporating data and uncertainty from incomplete VR systems and can help guide more geographically precise public health intervention to support HIV-related care and reduce HIV-related deaths.Peer reviewe

    Effect of a 2-week interruption in methotrexate treatment on COVID-19 vaccine response in people with immune-mediated inflammatory diseases (VROOM study): a randomised, open label, superiority trial

    Get PDF
    Background: Methotrexate is the first-line treatment for immune-mediated inflammatory diseases and reduces vaccine-induced immunity. We evaluated if a 2-week interruption of methotrexate treatment immediately after COVID-19 booster vaccination improved antibody response against the S1 receptor binding domain (S1-RBD) of the SARS-CoV-2 spike protein and live SARS-CoV-2 neutralisation compared with uninterrupted treatment in patients with immune-mediated inflammatory diseases. Method: We did a multicentre, open-label, parallel-group, randomised, superiority trial in secondary-care rheumatology and dermatology clinics in 26 hospitals in the UK. Adults (aged ≥18 years) with immune-mediated inflammatory diseases taking methotrexate (≤25 mg per week) for at least 3 months, who had received two primary vaccine doses from the UK COVID-19 vaccination programme were eligible. Participants were randomly assigned (1:1) using a centralised validated computer program, to temporarily suspend methotrexate treatment for 2 weeks immediately after COVID-19 booster vaccination or continue treatment as usual. The primary outcome was S1-RBD antibody titres 4 weeks after COVID-19 booster vaccination and was assessed masked to group assignment. All randomly assigned patients were included in primary and safety analyses. This trial is registered with ISRCTN, ISRCTN11442263; following a pre-planned interim analysis, recruitment was stopped early. Finding: Between Sept 30, 2021, and March 7, 2022, we screened 685 individuals, of whom 383 were randomly assigned: to either suspend methotrexate (n=191; mean age 58·8 years [SD 12·5], 118 [62%] women and 73 [38%] men) or to continue methotrexate (n=192; mean age 59·3 years [11·9], 117 [61%] women and 75 [39%] men). At 4 weeks, the geometric mean S1-RBD antibody titre was 25 413 U/mL (95% CI 22 227–29 056) in the suspend methotrexate group and 12 326 U/mL (10 538–14 418) in the continue methotrexate group with a geometric mean ratio (GMR) of 2·08 (95% CI 1·59–2·70; p<0·0001). No intervention-related serious adverse events occurred. Interpretation: 2-week interruption of methotrexate treatment in people with immune-mediated inflammatory diseases enhanced antibody responses after COVID-19 booster vaccination that were sustained at 12 weeks and 26 weeks. There was a temporary increase in inflammatory disease flares, mostly self-managed. The choice to suspend methotrexate should be individualised based on disease status and vulnerability to severe outcomes from COVID-19. Funding: National Institute for Health and Care Research

    Mapping subnational HIV mortality in six Latin American countries with incomplete vital registration systems

    Get PDF
    Background: Human immunodeficiency virus (HIV) remains a public health priority in Latin America. While the burden of HIV is historically concentrated in urban areas and high-risk groups, subnational estimates that cover multiple countries and years are missing. This paucity is partially due to incomplete vital registration (VR) systems and statistical challenges related to estimating mortality rates in areas with low numbers of HIV deaths. In this analysis, we address this gap and provide novel estimates of the HIV mortality rate and the number of HIV deaths by age group, sex, and municipality in Brazil, Colombia, Costa Rica, Ecuador, Guatemala, and Mexico. Methods: We performed an ecological study using VR data ranging from 2000 to 2017, dependent on individual country data availability. We modeled HIV mortality using a Bayesian spatially explicit mixed-effects regression model that incorporates prior information on VR completeness. We calibrated our results to the Global Burden of Disease Study 2017. Results: All countries displayed over a 40-fold difference in HIV mortality between municipalities with the highest and lowest age-standardized HIV mortality rate in the last year of study for men, and over a 20-fold difference for women. Despite decreases in national HIV mortality in all countries�apart from Ecuador�across the period of study, we found broad variation in relative changes in HIV mortality at the municipality level and increasing relative inequality over time in all countries. In all six countries included in this analysis, 50 or more HIV deaths were concentrated in fewer than 10 of municipalities in the latest year of study. In addition, national age patterns reflected shifts in mortality to older age groups�the median age group among decedents ranged from 30 to 45 years of age at the municipality level in Brazil, Colombia, and Mexico in 2017. Conclusions: Our subnational estimates of HIV mortality revealed significant spatial variation and diverging local trends in HIV mortality over time and by age. This analysis provides a framework for incorporating data and uncertainty from incomplete VR systems and can help guide more geographically precise public health intervention to support HIV-related care and reduce HIV-related deaths

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore