238 research outputs found

    Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films

    Get PDF
    Spin reorientation has been observed in CoFe2O4 thin single crystalline films epitaxially grown on (100) MgO substrate upon varying the film thickness. The critical thickness for such a spin-reorientation transition was estimated to be 300 nm. The reorientation is driven by a structural transition in the film from a tetragonal to cubic symmetry. At low thickness, the in-plane tensile stress induces a tetragonal distortion of the lattice that generates a perpendicular anisotropy, large enough to overcome the shape anisotropy and to stabilize the magnetization easy axis out of plane. However, in thicker films, the lattice relaxation toward the cubic structure of the bulk allows the shape anisotropy to force the magnetization to be in plane aligned

    Analysis and contribution of stress anisotropy in epitaxial hard ferrite thin films

    Get PDF
    The stress anisotropy in epitaxial hard ferrites thin films (BaFe12O19, CoFe2O4) has been investigated using two methods. (a) The thickness dependence of torque curves and magnetic hysteresis loops. (b) The comparison between magnetic and magneto-optic Kerr hysteresis loops. Both analyses confirm the domination of stress in CoFe2O4 whereas in BaFe12O19 films the stress is too weak to compete with magnetocrystalline anisotropy

    The influences of stomatal size and density on rice abiotic stress resilience

    Get PDF
    A warming climate coupled with reductions in water availability and rising salinity are increasingly affecting rice (Oryza sativa) yields. Elevated temperatures combined with vapour pressure deficit (VPD) rises are causing stomatal closure, further reducing plant productivity and cooling. It is unclear what stomatal size (SS) and stomatal density (SD) will best suit all these environmental extremes. To understand how stomatal differences contribute to rice abiotic stress resilience, we screened the stomatal characteristics of 72 traditionally bred varieties. We found significant variation in SS, SD and calculated anatomical maximal stomatal conductance (gsmax ) but did not identify any varieties with SD and gsmax as low as transgenic OsEPF1oe plants. Traditionally bred varieties with high SD and small SS (resulting in higher gsmax ) typically had lower biomasses, and these plants were more resilient to drought than low SD and large SS plants, which were physically larger. None of the varieties assessed were as resilient to drought or salinity as low SD OsEPF1oe transgenic plants. High SD and small SS rice displayed faster stomatal closure during increasing temperature and VPD, but photosynthesis and plant cooling were reduced. Compromises will be required when choosing rice SS and SD to tackle multiple future environmental stresses

    Drug-Related Problems in Coronary Artery Diseases

    Get PDF
    Coronary artery disease (CAD) remains the leading cause of mortality among cardiovascular diseases, responsible for 16% of the world’s total deaths. According to a statistical report published in 2020, the global prevalence of CAD was estimated at 1655 per 100,000 people and is predicted to exceed 1845 by 2030. Annually, in the United States, CAD accounts for approximately 610,000 deaths and costs more than 200 billion dollars for healthcare services. Most patients with CAD need to be treated over long periods with a combination of drugs. Therefore, the inappropriate use of drugs, or drug-related problems (DRPs), can lead to many consequences that affect these patients’ health, including decreased quality of life, increased hospitalization rates, prolonged hospital stays, increased overall health care costs, and even increased risk of morbidity and mortality. DRPs are common in CAD patients, with a prevalence of over 60%. DRPs must therefore be noticed and recognized by healthcare professionals. This chapter describes common types and determinants of DRPs in CAD patients and recommends interventions to limit their prevalence

    A Small Molecule that Induces Intrinsic Pathway Apoptosis with Unparalleled Speed

    Get PDF
    Apoptosis is generally believed to be a process thatrequires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, named Raptinal, which initiates intrinsic pathway caspase-dependent apoptosis within minutes in multiple cell lines. Comparison to a mechanistically diverse panel of apoptotic stimuli reveals that Raptinal-induced apoptosis proceeds with unparalleled speed. The rapid phenotype enabled identification of the criticalroles of mitochondrial voltage-dependent anion channel function, mitochondrial membrane potential/coupled respiration, and mitochondrial complex I, III, and IV function for apoptosis induction. Use of Raptinal in whole organisms demonstrates its utility for studying apoptosis invivo for a variety of applications. Overall, rapid inducers of apoptosis are powerful tools that will be used in a variety of settings to generate further insight into the apoptotic machinery. Palchaudhuri etal. describe the discovery of a small molecule called "Raptinal" that induces unusually rapid apoptotic cell death via the intrinsic pathway. Their work describes the utility of Raptinal as a tool for apoptosis induction relative to other available small molecules

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∌25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→Ό+ÎŒ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→Ό+ÎŒ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat Ă  l’Energie Atomique and Institut National de Physique NuclĂ©aire et de Physiquedes Particules (France), the Bundesministerium fĂŒr Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e InnovaciĂłn (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-ÎČ PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-ÎČ positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-ÎČ burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    The epitaxy of gold

    Full text link
    • 

    corecore