41 research outputs found

    Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone

    Get PDF
    Decrease in Cdx dosage in an allelic series of mouse Cdx mutants leads to progressively more severe posterior vertebral defects. These defects are corrected by posterior gain of function of the Wnt effector Lef1. Precocious expression of Hox paralogous 13 genes also induces vertebral axis truncation by antagonizing Cdx function. We report here that the phenotypic similarity also applies to patterning of the caudal neural tube and uro-rectal tracts in Cdx and Wnt3a mutants, and in embryos precociously expressing Hox13 genes. Cdx2 inactivation after placentation leads to posterior defects, including incomplete uro-rectal septation. Compound mutants carrying one active Cdx2 allele in the Cdx4-null background (Cdx2/4), transgenic embryos precociously expressing Hox13 genes and a novel Wnt3a hypomorph mutant all manifest a comparable phenotype with similar uro-rectal defects. Phenotype and transcriptome analysis in early Cdx mutants, genetic rescue experiments and gene expression studies lead us to propose that Cdx transcription factors act via Wnt signaling during the laying down of uro-rectal mesoderm, and that they are operative in an early phase of these events, at the site of tissue progenitors in the posterior growth zone of the embryo. Cdx and Wnt mutations and premature Hox13 expression also cause similar neural dysmorphology, including ectopic neural structures that sometimes lead to neural tube splitting at caudal axial levels. These findings involve the Cdx genes, canonical Wnt signaling and the temporal control of posterior Hox gene expression in posterior morphogenesis in the different embryonic germ layers. They shed a new light on the etiology of the caudal dysplasia or caudal regression range of human congenital defects.AICR project grant: (08-0199); Dutch Earth and Life Sciences grant: (820.02.005); 6th Framework Programme Network of Excellence `Cells into Organs'; Dutch government grant: (Bsik Program 03038); Fundação para a Ciência e Tecnologia grant: (PTDC/BIA-BCM/110638/2009); Centro de Biologia do Desenvolvimento grant: (POCTI-ISFL-4-664)

    Heritability of ECG biomarkers in the Netherlands twin registry measured from Holter ECGs

    Get PDF
    Introduction: The resting ECG is the most commonly used tool to assess cardiac electrophysiology. Previous studies have estimated heritability of ECG parameters based on these snapshots of the cardiac electrical activity. In this study we set out to determine whether analysis of heart rate specific data from Holter ECGs allows more complete assessment of the heritability of ECG parameters. Methods and Results: Holter ECGs were recorded from 221 twin pairs and analyzed using a multi-parameter beat binning approach. Heart rate dependent estimates of heritability for QRS duration, QT interval, Tpeak-Tend and Theight were calculated using structural equation modeling. QRS duration is largely determined by environmental factors whereas repolarization is primarily genetically determined. Heritability estimates of both QT interval and Theight were significantly higher when measured from Holter compared to resting ECGs and the heritability estimate of each was heart rate dependent. Analysis of the genetic contribution to correlation between repolarization parameters demonstrated that covariance of individual ECG parameters at different heart rates overlap but at each specific heart rate there was relatively little overlap in the genetic determinants of the different repolarization parameters. Conclusions: Here we present the first study of heritability of repolarization parameters measured from Holter ECGs. Our data demonstrate that higher heritability can be estimated from the Holter than the resting ECG and reveals rate dependence in the genetic-environmental determinants of the ECG that has not previously been tractable. Future applications include deeper dissection of the ECG of participants with inherited cardiac electrical disease.Emily C. Hodkinson, Melanie Neijts, Arash Sadrieh, Mohammad S. Imtiaz, Mathias Baumert, Rajesh N. Subbiah, Christopher S. Hayward, Dorret Boomsma, Gonneke Willemsen, JamieI.Vandenberg, Adam P. Hill, and Eco De Geu

    Оценка качества образования на основе компетентностного подхода

    Get PDF
    В работе представлен практический опыт оценки качества образования в новом формате компетентностного подход

    Genetic loci associated with heart rate variability and their effects on cardiac disease risk

    Get PDF
    Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (-0.74 < r(g) < -0.55) and blood pressure (-0.35 < r(g) < -0.20). These findings provide clinically relevant biological insight into heritable variation in vagal heart rhythm regulation, with a key role for genetic variants (GNG11, RGS6) that influence G-protein heterotrimer action in GIRK-channel induced pacemaker membrane hyperpolarization

    Erratum: Genetic loci associated with heart rate variability and their effects on cardiac disease risk

    Get PDF
    Correction to article number 15805 published in June 2017 in Nature Communications, vol 8

    Erratum: Genetic loci associated with heart rate variability and their effects on cardiac disease risk

    Get PDF
    Correction to article number 15805 published in June 2017 in Nature Communications, vol 8
    corecore