26 research outputs found

    Inhaled nitric oxide, right ventricular efficiency, and pulmonary vascular mechanics: Selective vasodilation of small pulmonary vessels during hypoxic pulmonary vasoconstriction

    Get PDF
    AbstractObjective: In the setting of acute pulmonary artery hypertension, techniques to reduce right ventricular energy requirements may ameliorate cardiac failure and reduce morbidity and mortality. Inhaled nitric oxide, a selective pulmonary vasodilator, may be effective in the treatment of pulmonary artery hypertension, but its effects on cardiopulmonary interactions are poorly understood. Methods: We therefore developed a model of hypoxic pulmonary vasoconstriction that mimics the clinical syndrome of acute pulmonary hypertension. Inhaled nitric oxide was administered in concentrations of 20, 40, and 80 ppm. Results: During hypoxic pulmonary vasoconstriction, the administration of nitric oxide resulted in a significant improvement in pulmonary vascular mechanics and a reduction in right ventricular afterload. These improvements were a result of selective vasodilation of small pulmonary vessels and more efficient blood flow through the pulmonary vascular bed (improved transpulmonary vascular efficiency). The right ventricular total power output diminished during the inhalation of nitric oxide, indicating a reduction in right ventricular energy requirements. The net result of nitric oxide administration was an increase in right ventricular efficiency. Conclusion: These data suggest that nitric oxide may be beneficial to the failing right ventricle by improving pulmonary vascular mechanics and right ventricular efficiency. (J Thorac Cardiovasc Surg 1997;113:1006-13

    Weight Consistency Specifies Regularities of Macaque Cortical Networks

    Get PDF
    To what extent cortical pathways show significant weight differences and whether these differences are consistent across animals (thereby comprising robust connectivity profiles) is an important and unresolved neuroanatomical issue. Here we report a quantitative retrograde tracer analysis in the cynomolgus macaque monkey of the weight consistency of the afferents of cortical areas across brains via calculation of a weight index (fraction of labeled neurons, FLN). Injection in 8 cortical areas (3 occipital plus 5 in the other lobes) revealed a consistent pattern: small subcortical input (1.3% cumulative FLN), high local intrinsic connectivity (80% FLN), high-input form neighboring areas (15% cumulative FLN), and weak long-range corticocortical connectivity (3% cumulative FLN). Corticocortical FLN values of projections to areas V1, V2, and V4 showed heavy-tailed, lognormal distributions spanning 5 orders of magnitude that were consistent, demonstrating significant connectivity profiles. These results indicate that 1) connection weight heterogeneity plays an important role in determining cortical network specificity, 2) high investment in local projections highlights the importance of local processing, and 3) transmission of information across multiple hierarchy levels mainly involves pathways having low FLN values
    corecore