38 research outputs found

    The role of rainfalls for erosion and sedimentation in the degraded mangroves, Can Gio district, Vietnam

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914

    Get PDF
    A transient gravitational-wave signal, GW150914, was identi fi ed in the twin Advanced LIGO detectors on 2015 September 2015 at 09:50:45 UTC. To asse ss the implications of this discovery, the detectors remained in operation with unchanged con fi gurations over a period of 39 days around the time of t he signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false-alarm rate ( FAR ) of < ́ -- 4.9 10 yr 61 , yielding a p -value for GW150914 of < ́ - 210 7 . Parameter estimation follo w-up on this trigger identi fi es its source as a binary black hole ( BBH ) merger with component masses ( )( ) = - + - + mm M ,36,29 12 4 5 4 4 at redshift = - + z 0.09 0.04 0.03 ( median and 90% credible range ) . Here, we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between – -- 2 53 Gpc yr 31 ( comoving frame ) . Incorporating all search triggers that pass a much lower threshold while accounting for the uncerta inty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from – -- 13 600 Gpc yr 31 depending on assumptions about the BBH mass distribution. All together, our various rate estimat es fall in the conservative range – -- 2 600 Gpc yr 31

    The Physics of the B Factories

    Get PDF

    Unconventional GMR angular dependence using a compensated ferrimagnet

    No full text
    International audienceWe have designed a GdCo/Cu/NiFe giant magnetoresistance (GMR) trilayer , the magnetoresistance of which does not always depend on the angle between the magnetisations of the electrodes. Using a GdCo ferrimagnetic alloy close to compensation, it was possible to experimentally reach the spin flop field B(sf) of the ferrimagnetic layer . Below B(sf), the ferrimagnetic layer behaves as a ferromagnetic layer , however above B(sf), the ferrimagnetic sublattice magnetisations are no longer antiparallel and rotate 90 degrees away from the GdCo layer totalmagnetisation, i.e. 90 degrees away from the applied field . the GMR responds to the angle between Co and NiFe magnetisations and not to the angle between GdCo and NiFe magnetisations. Such a structure allows to study the change of sign of the GdCo spin polarisation as a function of temperature, and details of the GdCo magnetisation when usual magnetometry is difficult. FeNi can be seen as a sensor for the in-plane component of Co sublattice magnetisation, whereas extraordinary Hall effect measurements give a complementary image of the perpendicular component of the Comagnetisation

    Nonsmooth algorithms and Nesterov’s smoothing technique for generalized Fermat–Torricelli problems

    Get PDF
    We present algorithms for solving a number of new models of facility location which generalize the classical Fermat–Torricelli problem. Our first approach involves using Nesterov’s smoothing technique and the minimization majorization principle to build smooth approximations that are convenient for applying smooth optimization schemes. Another approach uses subgradient-type algorithms to cope directly with the nondifferentiability of the cost functions. Convergence results of the algorithms are proved and numerical tests are presented to show the effectiveness of the proposed algorithms

    Geometrie in 7

    Get PDF
    Copy held by FIZ Karlsruhe / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore