28 research outputs found

    Open-loop control of cavity noise using Proper Orthogonal Decomposition reduced-order model.

    Get PDF
    Flow over open cavities is mainly governed by a feedback mechanism due to the interaction of shear layer instabilities and acoustic forcing propagating upstream in the cavity. This phenomenon is known to lead to resonant tones that can reach 180 dB in the far-field and may cause structural fatigue issues and annoying noise emission. This paper concerns the use of optimal control theory for reducing the noise level emitted by the cavity. Boundary control is introduced at the cavity upstream corner as a normal velocity component. Model-based optimal control of cavity noise involves multiple simulations of the compressible Navier–Stokes equations and its adjoint, which makes it a computationally expensive optimization approach. To reduce the computational costs, we propose to use a reduced-order model (ROM) based on Proper Orthogonal Decomposition (POD) as a surrogate model of the forward simulation. For that, a control input separation method is first used to introduce explicitly the control effect in the model. Then, an accurate and robust POD ROM is derived by using an optimization-based identification procedure and generalized POD modes, respectively. Since the POD modes describe only velocities and speed of sound, we minimize a noise-related cost functional characteristic of the total enthalpy unsteadiness. After optimizing the control function with the reduced-order model, we verify the optimality of the solution using the original, high-fidelity model. A maximum noise reduction of 4.7 dB is reached in the cavity and up to 16 dB at the far-field

    Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17 : analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Across low-income and middle-income countries (LMICs), one in ten deaths in children younger than 5 years is attributable to diarrhoea. The substantial between-country variation in both diarrhoea incidence and mortality is attributable to interventions that protect children, prevent infection, and treat disease. Identifying subnational regions with the highest burden and mapping associated risk factors can aid in reducing preventable childhood diarrhoea. Methods We used Bayesian model-based geostatistics and a geolocated dataset comprising 15 072 746 children younger than 5 years from 466 surveys in 94 LMICs, in combination with findings of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, to estimate posterior distributions of diarrhoea prevalence, incidence, and mortality from 2000 to 2017. From these data, we estimated the burden of diarrhoea at varying subnational levels (termed units) by spatially aggregating draws, and we investigated the drivers of subnational patterns by creating aggregated risk factor estimates. Findings The greatest declines in diarrhoeal mortality were seen in south and southeast Asia and South America, where 54·0% (95% uncertainty interval [UI] 38·1–65·8), 17·4% (7·7–28·4), and 59·5% (34·2–86·9) of units, respectively, recorded decreases in deaths from diarrhoea greater than 10%. Although children in much of Africa remain at high risk of death due to diarrhoea, regions with the most deaths were outside Africa, with the highest mortality units located in Pakistan. Indonesia showed the greatest within-country geographical inequality; some regions had mortality rates nearly four times the average country rate. Reductions in mortality were correlated to improvements in water, sanitation, and hygiene (WASH) or reductions in child growth failure (CGF). Similarly, most high-risk areas had poor WASH, high CGF, or low oral rehydration therapy coverage. Interpretation By co-analysing geospatial trends in diarrhoeal burden and its key risk factors, we could assess candidate drivers of subnational death reduction. Further, by doing a counterfactual analysis of the remaining disease burden using key risk factors, we identified potential intervention strategies for vulnerable populations. In view of the demands for limited resources in LMICs, accurately quantifying the burden of diarrhoea and its drivers is important for precision public health

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global burden of 87 risk factors in 204 countries and territories, 1990�2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk�outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk�outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk�outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95 uncertainty interval UI 9·51�12·1) deaths (19·2% 16·9�21·3 of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12�9·31) deaths (15·4% 14·6�16·2 of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253�350) DALYs (11·6% 10·3�13·1 of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0�9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10�24 years, alcohol use for those aged 25�49 years, and high systolic blood pressure for those aged 50�74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Not Available

    No full text
    Not AvailableRice bran is an invaluable by-product of paddy processing industry. It is rich in minerals, protein, lipids, and crude fiber. In addition, it also possesses compounds with anti-oxidant, anti-allergic, anti-diabetic, and anti-cancer properties. It forms a basis for the extraction of rice bran oil and preparation of various functional foods with health benefits and potential to prevent chronic health issues. Nevertheless, the rapid deterioration of bran upon storage acts as a major limitation in exploiting the full potential of rice bran. In this review, we have discussed three strategies to address rapid rancidity of rice bran and enhance its shelf life and storability vis-a-vis emphasizing the importance of rice bran in terms of its nutritional composition. One strategy is through exploitation of the null mutations in the genes governing lipases and lipoxygenases leading to nonfunctional enzymes (enzyme deficient approach), another strategy is through reducing the PUFA content that is more prone to oxidation (substrate deficient approach) and a third strategy is through enhancing the antioxidant content that effectively terminate the lipid peroxidation by donating the hydrogen atom.Not Availabl

    Not Available

    No full text
    Not AvailableBackground: Rice is staple food for more than half of the world’s population including two billion Asians, who obtain 60-70% of their energy intake from rice and its derivatives. To meet the growing demand from human population, rice varieties with higher yield potential and greater yield stability need to be developed. The favourable alleles for yield and yield contributing traits are distributed among two subspecies i.e., indica and japonica of cultivated rice (Oryza sativa L.). Identification of novel favourable alleles in indica/japonica will pave way to marker-assisted mobilization of these alleles in to a genetic background to break genetic barriers to yield. Results: A new plant type (NPT) based mapping population of 310 recombinant inbred lines (RILs) was used to map novel genomic regions and QTL hotspots influencing yield and eleven yield component traits. We identified major quantitative trait loci (QTLs) for days to 50% flowering (R2 = 25%, LOD = 14.3), panicles per plant (R2 = 19%, LOD = 9.74), flag leaf length (R2 = 22%, LOD = 3.05), flag leaf width (R2 = 53%, LOD = 46.5), spikelets per panicle (R2 = 16%, LOD = 13.8), filled grains per panicle (R2 = 22%, LOD = 15.3), percent spikelet sterility (R2 = 18%, LOD = 14.24), thousand grain weight (R2 = 25%, LOD = 12.9) and spikelet setting density (R2 = 23%, LOD = 15) expressing over two or more locations by using composite interval mapping. The phenotypic variation (R2 ) ranged from 8 to 53% for eleven QTLs expressing across all three locations. 19 novel QTLs were contributed by the NPT parent, Pusa1266. 15 QTL hotpots on eight chromosomes were identified for the correlated traits. Six epistatic QTLs effecting five traits at two locations were identified. A marker interval (RM3276-RM5709) on chromosome 4 harboring major QTLs for four traits was identified. Conclusions: The present study reveals that favourable alleles for yield and yield contributing traits were distributed among two subspecies of rice and QTLs were co-localized in different genomic regions. QTL hotspots will be useful for understanding the common genetic control mechanism of the co-localized traits and selection for beneficial allele at these loci will result in a cumulative increase in yield due to the integrative positive effect of various QTLs. The information generated in the present study will be useful to fine map and to identify the genes underlying major robust QTLs and to transfer all favourable QTLs to one genetic background to break genetic barriers to yield for sustained food securityNot Availabl

    Not Available

    No full text
    Not AvailableRice is sensitive to heat stress at gametogenesis and anthesis stages. For sustaining rice yields under the predicted threat of reproductive stage heat stress (RSHS), identification of tolerant donors as well as mapping of genes governing tolerance is crucial. Recently a NERICA (NEwRIce for AfriCA) rice genotype, NL44 has been reported tolerant to RSHS. The present study aims to survey a recombinant inbred line (RIL) population developed from the cross, Pusa Basmati 1 (PB1)/NL44 using markers linked to 54 RSHS quantitative trait loci (QTLs) through phenotypic and genotypic characterization. When exposed to RSHS, the susceptible parent PB1 and several RILs showed significant reduction for spikelet fertility and grain yield plant−1 relative to NL44. Both these traits and the estimated stress tolerance index (STI) showed a quantitative pattern of inheritance. Out of the 116 SSR markers surveyed, 31 markers were polymorphic between PB1 and NL44. No discernible associations could be found through a preliminary bulked segregant analysis with these markers. A subsequent single marker analysis revealed five minor QTLs, four for spikelet fertility under heat stress and two for STI-spikelet fertility, of which one QTL was mapped for both the traits. These QTLs, however, could explain a very low level of total phenotypic variation. Additionally, the cumulative additive effect of these QTLs could account only for a possible 30% of the contrast between PB1 and NL44. Thus, the study clearly establishes that NL44 has novel genomic regions for RSHS tolerance.Not Availabl
    corecore