94 research outputs found

    Microchemical characterization of placer gold grains from the Meyos-Essabikoula area, Ntem complex, southern Cameroon

    Get PDF
    Gold occurs as a native metal, usually containing silver, and in some cases mercury, copper, and palladium. It may also occur as inclusions within sulfur-rich minerals, such as pyrite and arsenopyrite. The style and variety of gold mineralization is influenced by the geological setting, chemistry of the ore fluids, and the nature of their interactions with rocks. Gold grains liberated from bedrock into surficial sediments during weathering and erosion are chemically stable and may be characterized according to their mineralogy: i.e the alloy composition and suite of mineral inclusions revealed within polished sections, characteristics faithful to gold from the hypogene source. This approach has been applied to placer gold grains from the Meyos-Essabikoula area, Cameroon, where the source of gold is not yet confirmed due to poor outcrop exposure. A total of 221 alluvial gold grains from 10 sites, tributaries of Sing and Bivele River over the Ntem Complex have been studied using Electron Probe Micro-Analysis (EMPA) to determine the concentration of minor alloying metals, (notably Au, Ag, Cu, and Hg) and Scanning Electron Microscopy (SEM) in order to evaluate the assemblage of mineral inclusions within the gold. Most of the grains are sub-rounded with pitted surfaces and inclusions of pyrrhotite, acanthite, and chalcopyrite were observed. The grains are AuAg alloys ranging from 54.4 to 99.8 wt% Au, 0.1–48.4 wt% Ag, 0.1–0.8 wt% Hg and 0–0.3 wt% Cu. The presence of Fe oxide (magnetite) inclusions containing Cr and V (to around 5 wt %) has not been reported elsewhere and suggests a strong interaction between hot reducing ore fluids and local mafic lithologies

    Thermodynamic controls on element partitioning between titanomagnetite and andesitic–dacitic silicate melts

    Get PDF
    Titanomagnetite–melt partitioning of Mg, Mn, Al, Ti, Sc, V, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Hf and Ta was investigated experimentally as a function of oxygen fugacity (fO2) and temperature (T) in an andesitic–dacitic bulk-chemical compositional range. In these bulk systems, at constant T, there are strong increases in the titanomagnetite–melt partitioning of the divalent cations (Mg2+, Mn2+, Co2+, Ni2+, Zn2+) and Cu2+/Cu+ with increasing fO2 between 0.2 and 3.7 log units above the fayalite–magnetite–quartz buffer. This is attributed to a coupling between magnetite crystallisation and melt composition. Although melt structure has been invoked to explain the patterns of mineral–melt partitioning of divalent cations, a more rigorous justification of magnetite–melt partitioning can be derived from thermodynamic principles, which accounts for much of the supposed influence ascribed to melt structure. The presence of magnetite-rich spinel in equilibrium with melt over a range of fO2 implies a reciprocal relationship between a(Fe2+O) and a(Fe3+O1.5) in the melt. We show that this relationship accounts for the observed dependence of titanomagnetite–melt partitioning of divalent cations with fO2 in magnetite-rich spinel. As a result of this, titanomagnetite–melt partitioning of divalent cations is indirectly sensitive to changes in fO2 in silicic, but less so in mafic bulk systems.Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The attached file is the published pdf

    The mineralogy and petrology of I-type cosmic spherules: Implications for their sources, origins and identification in sedimentary rocks

    Get PDF
    I-type cosmic spherules are micrometeorites that formed by melting during atmospheric entry and consist mainly of iron oxides and FeNi metal. I-types are important because they can readily be recovered from sedimentary rocks allowing study of solar system events over geological time. We report the results of a study of the mineralogy and petrology of 88 I-type cosmic spherules recovered from Antarctica in order to evaluate how they formed and evolved during atmospheric entry, to constrain the nature of their precursors and to establish rigorous criteria by which they may be conclusively identified within sediments and sedimentary rocks. Two textural types of I-type cosmic spherule are recognised: (1) metal bead-bearing (MET) spherules dominated by Ni-poor (100 and suggest that metal from H-group ordinary, CM, CR and iron meteorites may form the majority of particles. Oxidation during entry heating increases in the series MET 80 wt% Ni comprising a particle mass fraction of <0.2. Non-equilibrium effects in the exchange of Ni between wüstite and metal, and magnetite and wüstite are suggested as proxies for the rate of oxidation and cooling rate respectively. Variations in magnetite and wüstite crystal sizes are also suggested to relate to cooling rate allowing relative entry angle of particles to be evaluated. The formation of secondary metal in the form of sub-micron Ni-rich or Pt-group nuggets and as symplectite with magnetite was also identified and suggested to occur largely due to the exsolution of metallic alloys during decomposition of non-stoichiometric wüstite. Weathering is restricted to replacement of metal by iron hydroxides. The following criteria are recommended for the conclusive identification of I-type spherules within sediments and sedimentary rocks: (i) spherical particle morphologies, (ii) dendritic crystal morphologies, (iii) the presence of wüstite and magnetite, (iv) Ni-bearing wüstite and magnetite, and (v) the presence of relict FeNi metal

    REY and Trace Element Chemistry of Fluorite from Post-Variscan Hydrothermal Veins in Paleozoic Units of the North German Basin

    No full text
    Hydrothermal fluorites from Paleozoic sedimentary rocks and volcanic units in the North German Basin (NGB) have been investigated to create a petrographic and geochemical inventory&mdash;with particular focus on strategic elements such as rare earth elements (REE)&mdash;and to uncover possible links between the post-Variscan hydrothermal mineralization in the NGB and bordering areas such as the Harz Mountains and Flechtingen Calv&ouml;rde Block (FCB). Fluorites from ten localities underwent a detailed petrographic examination, including SEM-BSE/CL imagery, and were compositionally analysed using LA-ICP-MS. Overall, REY concentrations are comparatively low in fluorite from all investigated areas&mdash;the median sum of REY ranges from 0.3 to 176 ppm. EuropiumCN anomalies are slightly negative or absent, indicating that either the formation fluid experienced temperatures above 250 &deg;C or that fluid-rock interactions and REE enrichment was likely controlled by the source rock (i.e., volcanic) composition and complexation processes. Fluorites from the Altmark-Brandenburg Basin (ABB) and the Lower Saxony Basin (LSB) display distinctly different REYCN signatures, suggesting that fluid compositions and genetic processes such as fluid-rock interaction differed significantly between the two areas. Complex growth zones and REYCN signatures in fluorite from the ABB and the FCB reflect geochemical variability due to adsorption processes and intrinsic crystallographic controls and imply that they are genetically related. Two petrographically and geochemically distinct generations are observed: Fluorite I&mdash;light SEM shades, relatively enriched in LREE; Fluorite II&mdash;darker SEM shades, comparatively depleted LREE, slightly higher HREE concentrations. These fluorite generations represent zoned (or cyclical) growth within a single progressive hydrothermal event and do not reflect a secondary remobilization process. We demonstrate that increasing Tb/La ratios and decreasing La/Ho ratios can be the result of continuous zoned growth during a single mineralizing event, with significant compositional variations on a micron-scale. This has implications for the interpretation of such trends and hence the inferred genetic evolution of fluorite that displays such geochemical patterns. The complex micro-scale intergrowth of these generations stresses the need for detailed petrographic investigations when geochemical data are collected and interpreted for mineral exploration

    Trace elements and textures of hydrothermal sphalerite and pyrite in Upper Permian (Zechstein) carbonates of the North German Basin

    No full text
    Deeply buried Upper Permian (Zechstein) carbonates in the southwestern North German Basin host widespread Zn-Fe-Pb sulfide mineralization. The spatial extent of the sediment-hosted mineralization, the geochemical formation conditions, and the number of mineralizing events that are manifested in the Permian sedimentary rocks are an ongoing matter of debate and interest for mineral exploration efforts in the North German Basin. We present detailed petrographic and geochemical data of ore minerals from drill core samples from the Lower Saxony Basin that forms the southwestern part of the North German Basin. Based on these data, we propose and discuss a genetic model for the ore-forming processes. Of particular interest are the sources of metals and sulfur and the timing and temperature at which the sulfides formed. The main sulfide minerals are sphalerite, pyrite, and galena, which commonly occupy mm- to m-scale open space fillings and fractures. Petrographic observations further suggest hydrothermal replacement of the Zechstein Ca2 carbonates, by sulfides, secondary calcite, and anhydrite. Early diagenetic pyrite occurs disseminated in the Zechstein Ca2 carbonates. Scanning electron microscopy, electron microprobe, laser ablation ICP-MS, and sulfur isotope analyses were used to collect petrographic and compositional data on the sphalerite and pyrite. Hydrothermal sphalerite displays cyclical growth patterns and sectoral zoning characterized by colors varying from colorless to black and corresponding indicative variations in their minor and trace element concentrations, e.g., Fe concentrations ranging between below the limit of detection (7.7 ppm) to a maximum of 2.8 wt%. A detailed LA-ICP-MS multielement map illustrates the observed growth patterns and reveals that Mn, Co, Fe, Cu, Ge, Ag, Cd, Hg, Tl, and Pb are the elements that control the distinct color variations. Sectoral zoning is reflected in comparatively high Cu, Ag, and Pb contents, whereas the cyclical growth banding can be retraced by variations in Fe, Co, Cd, Hg, and Tl contents. Calculated temperatures from the trace element signatures using the GGIMFis geothermometer indicate a formation temperature of 148 ± 55 °C for sphalerite. Although the investigated mineralization bears many trademarks of a Mississippi Valley-type (MVT) deposit, the elevated temperatures, a burial depth of around 3.2 km, low concentrations of common strategic elements such as Ga, Ge, and In (< median of 1.3 ppm in sphalerite), as well as the abundance of pyrite represent the unique nature of the Ca2-hosted mineralization. The observed epigenetic ore zones are therefore best described as carbonate replacement mineralization and present an intriguing case study of geochemical exploration in a deeply covered terrane
    corecore