121 research outputs found

    Maximizing dose reductions with cardiac CT

    Get PDF
    Multidetector computed tomography has come a long way in a short time, quickly becoming a standard tool in the cardiac imaging armamentarium. The promise of plaque imaging, combined with both anatomical visualization and stenosis detection, has made this a preferred first line test of many cardiologists and radiologists. This test is well suited to rule out coronary artery disease (obstruction) and still diagnosing subclinical plaque, with may be a good target for anti-atherosclerotic therapies. There has been recent criticism against CT imaging, and cardiac CT specifically, due to the high radiation doses that being employed. New advances have allowed for dramatic dose reductions. These include more routinely performed methods such as dose modulation, and newer methods such as prospective gating or minimizing the field of view. This paper will review the different applications to reduce cardiac CT radiation doses to nominal levels, potentially expanding the applications of cardiac CT by removing one of the biggest barriers

    Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control

    Get PDF
    The aim of this study was to assess the diagnostic accuracy of dual-source computed tomography (DSCT) for evaluation of coronary artery disease (CAD) in a population with extensive coronary calcifications without heart rate control. Thirty patients (24 male, 6 female, mean age 63.1±11.3 years) with a high pre-test probability of CAD underwent DSCT coronary angiography and invasive coronary angiography (ICA) within 14±9 days. No beta-blockers were administered prior to the scan. Two readers independently assessed image quality of all coronary segments with a diameter ≥1.5 mm using a four-point score (1: excellent to 4: not assessable) and qualitatively assessed significant stenoses as narrowing of the luminal diameter >50%. Causes of false-positive (FP) and false-negative (FN) ratings were assigned to calcifications or motion artifacts. ICA was considered the standard of reference. Mean body mass index was 28.3±3.9 kg/m(2) (range 22.4–36.3 kg/m(2)), mean heart rate during CT was 70.3±14.2 bpm (range 47–102 bpm), and mean Agatston score was 821±904 (range 0–3,110). Image quality was diagnostic (scores 1–3) in 98.6% (414/420) of segments (mean image quality score 1.68±0.75); six segments in three patients were considered not assessable (1.4%). DSCT correctly identified 54 of 56 significant coronary stenoses. Severe calcifications accounted for false ratings in nine segments (eight FP/one FN) and motion artifacts in two segments (one FP/one FN). Overall sensitivity, specificity, positive and negative predictive value for evaluating CAD were 96.4, 97.5, 85.7, and 99.4%, respectively. First experience indicates that DSCT coronary angiography provides high diagnostic accuracy for assessment of CAD in a high pre-test probability population with extensive coronary calcifications and without heart rate control

    Prevalence of anatomical variants and coronary anomalies in 543 consecutive patients studied with 64-slice CT coronary angiography

    Get PDF
    The aim of our study was to assess the prevalence of variants and anomalies of the coronary artery tree in patients who underwent 64-slice computed tomography coronary angiography (CT-CA) for suspected or known coronary artery disease. A total of 543 patients (389 male, mean age 60.5 ± 10.9) were reviewed for coronary artery variants and anomalies including post-processing tools. The majority of segments were identified according to the American Heart Association scheme. The coronary dominance pattern results were: right, 86.6%; left, 9.2%; balanced, 4.2%. The left main coronary artery had a mean length of 112 ± 55 mm. The intermediate branch was present in the 21.9%. A variable number of diagonals (one, 25%; two, 49.7%; more than two, 24%; none, 1.3%) and marginals (one, 35.2%; two, 46.2%; more than two, 18%; none, 0.6%) was visualized. Furthermore, CT-CA may visualize smaller branches such as the conus branch artery (98%), the sinus node artery (91.6%), and the septal branches (93%). Single or associated coronary anomalies occurred in 18.4% of the patients, with the following distribution: 43 anomalies of origin and course, 68 intrinsic anomalies (59 myocardial bridging, nine aneurisms), three fistulas. In conclusion, 64-slice CT-CA provides optimal visualization of the variable and complex anatomy of coronary arteries because of the improved isotropic spatial resolution and flexible post-processing tool

    Computed tomography segmental calcium score (SCS) to predict stenosis severity of calcified coronary lesions

    Get PDF
    To estimate the probability of ≥50 % coronary stenoses based on computed tomography (CT) segmental calcium score (SCS) and clinical factors. The Institutional Review Board approved the study. A training sample of 201 patients underwent CT calcium scoring and conventional coronary angiography (CCA). All patients consented to undergo CT before CCA after being informed of the additional radiation dose. SCS and calcification morphology were assessed in individual coronary segments. We explored the predictive value of patient’s symptoms, clinical history, SCS and calcification morphology. We developed a prediction model in the training sample based on these variables then tested it in an independent test sample. The odds ratio (OR) for ≥50 % coronary stenosis was 1.8-fold greater (p = 0.006) in patients with typical chest pain, twofold (p = 0.014) greater in patients with acute coronary syndromes, twofold greater (p < 0.001) in patients with prior myocardial infarction. Spotty calcifications had an OR for ≥50 % stenosis 2.3-fold (p < 0.001) greater than the absence of calcifications, wide calcifications 2.7-fold (p < 0.001) greater, diffuse calcifications 4.6-fold (p < 0.001) greater. In middle segments, each unit of SCS had an OR 1.2-fold (p < 0.001) greater than in distal segments; in proximal segments the OR was 1.1-fold greater (p = 0.021). The ROC curve area of the prediction model was 0.795 (0.95 confidence interval 0.602–0.843). Validation in a test sample of 201 independent patients showed consistent diagnostic performance. In conjunction with calcification morphology, anatomical location, patient’s symptoms and clinical history, SCS can be helpful to estimate the probability of ≥50 % coronary stenosis

    Short GRB 160821B: A Reverse Shock, a Refreshed Shock, and a Well-sampled Kilonova

    Get PDF
    We report our identification of the optical afterglow and host galaxy of the short-duration gamma-ray burst sGRB 160821B. The spectroscopic redshift of the host is z = 0.162, making it one of the lowest redshift short-duration gamma-ray bursts (sGRBs) identified by Swift. Our intensive follow-up campaign using a range of ground-based facilities as well as Hubble Space Telescope, XMM-Newton, and Swift, shows evidence for a late-time excess of optical and near-infrared emission in addition to a complex afterglow. The afterglow light curve at X-ray frequencies reveals a narrow jet, θj1.90.03+0.10{\theta }_{j}\sim {1.9}_{-0.03}^{+0.10} deg, that is refreshed at >1 day post-burst by a slower outflow with significantly more energy than the initial outflow that produced the main GRB. Observations of the 5 GHz radio afterglow shows a reverse shock into a mildly magnetized shell. The optical and near-infrared excess is fainter than AT2017gfo associated with GW170817, and is well explained by a kilonova with dynamic ejecta mass M dyn = (1.0 ± 0.6) × 10−3 M ⊙ and a secular (post-merger) ejecta mass with M pm = (1.0 ± 0.6) × 10−2 M ⊙, consistent with a binary neutron star merger resulting in a short-lived massive neutron star. This optical and near-infrared data set provides the best-sampled kilonova light curve without a gravitational wave trigger to date

    The Properties of GRB 120923A at a Spectroscopic Redshift of z approximate to 7.8

    Get PDF
    Gamma-ray bursts (GRBs) are powerful probes of early stars and galaxies, during and potentially even before the era of reionization. Although the number of GRBs identified at z gsim 6 remains small, they provide a unique window on typical star-forming galaxies at that time, and thus are complementary to deep field observations. We report the identification of the optical drop-out afterglow of Swift GRB 120923A in near-infrared Gemini-North imaging, and derive a redshift of z=7.840.12+0.06z={7.84}_{-0.12}^{+0.06} from Very Large Telescope/X-shooter spectroscopy. At this redshift the peak 15–150 keV luminosity of the burst was 3.2 × 1052 erg s−1, and in this sense it was a rather typical long-duration GRB in terms of rest frame luminosity. This burst was close to the Swift/Burst Alert Telescope detection threshold, and the X-ray and near-infrared afterglow were also faint. We present ground- and space-based follow-up observations spanning from X-ray to radio, and find that a standard external shock model with a constant-density circumburst environment of density n ≈ 4 × 10−2 cm−3 gives a good fit to the data. The near-infrared light curve exhibits a sharp break at t ≈ 3.4 days in the observer frame which, if interpreted as being due to a jet, corresponds to an opening angle of θjet5{\theta }_{\mathrm{jet}}\approx 5^\circ . The beaming-corrected γ-ray energy is then Eγ2×1050{E}_{\gamma }\approx 2\times {10}^{50} erg, while the beaming-corrected kinetic energy is lower, EK1049{E}_{{\rm{K}}}\approx {10}^{49} erg, suggesting that GRB 120923A was a comparatively low kinetic energy event. We discuss the implications of this event for our understanding of the high-redshift population of GRBs and their identification

    Incremental value of the CT coronary calcium score for the prediction of coronary artery disease

    Get PDF
    Objectives:: To validate published prediction models for the presence of obstructive coronary artery disease (CAD) in patients with new onset stable typical or atypical angina pectoris and to assess the incremental value of the CT coronary calcium score (CTCS). Methods:: We searched the literature for clinical prediction rules for the diagnosis of obstructive CAD, defined as≥50% stenosis in at least one vessel on conventional coronary angiography. Significant variables were re-analysed in our dataset of 254 patients with logistic regression. CTCS was subsequently included in the models. The area under the receiver operating characteristic curve (AUC) was calculated to assess diagnostic performance. Results:: Re-analysing the variables used by Diamond & Forrester yielded an AUC of 0.798, which increased to 0.890 by adding CTCS. For Pryor, Morise 1994, Morise 1997 and Shaw the AUC increased from 0.838 to 0.901, 0.831 to 0.899, 0.840 to 0.898 and 0.833 to 0.899. CTCS significantly improved model performance in each model. Conclusions:: Validation demonstrated good diagnostic performance across all models. CTCS improves the prediction of the presence of obstructive CAD, independent of clinical predictors, and should be considered in its diagnostic work-up. © 2010 The Author(s)

    Is there a gender difference in noninvasive coronary imaging? Multislice computed tomography for noninvasive detection of coronary stenoses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multislice computed tomography (MSCT) coronary angiography is the foremost alternative to invasive coronary angiography.</p> <p>Methods</p> <p>We sought to compare the diagnostic accuracy of MSCT in female and male patients with suspected coronary disease. Altogether 50 women and 95 men underwent MSCT with 0.5 mm detector collimation. Coronary artery stenoses of at least 50% on conventional coronary angiography were considered significant.</p> <p>Results</p> <p>The coronary vessel diameters of all four main coronary artery branches were significantly larger in men than in women. The diagnostic accuracy of MSCT in identifying patients with coronary artery disease was significantly lower for women (72%) compared with men (89%, <it>p </it>< 0.05). Also sensitivity (70% vs. 95%), positive predictive value (64% vs. 93%), and the rate of nondiagnostic examinations (14% vs. 4%, all: <it>p </it>< 0.05) were significantly worse for women. The effective radiation dose of MSCT coronary angiography was significantly higher in the examination of women (13.7 ± 1.2 mSv) than of men (11.7 ± 0.9 mSv, <it>p </it>< 0.001), mainly as a result of the fact that the radiosensitive female breast (contributing 24.5% of the dose in women) is in the x-ray path.</p> <p>Conclusion</p> <p>Noninvasive coronary angiography with MSCT might be less accurate and sensitive for women than men. Also, women are exposed to a significantly higher effective radiation dose than men.</p

    Serum Uric Acid Predicts All-Cause and Cardiovascular Mortality Independently of Hypertriglyceridemia in Cardiometabolic Patients without Established CV Disease: A Sub-Analysis of the URic acid Right for heArt Health (URRAH) Study

    Get PDF
    High serum uric acid (SUA) and triglyceride (TG) levels might promote high-cardiovascular risk phenotypes across the cardiometabolic spectrum. However, SUA predictive power in the presence of normal and high TG levels has never been investigated. We included 8124 patients from the URic acid Right for heArt Health (URRAH) study cohort who were followed for over 20 years and had no established cardiovascular disease or uncontrolled metabolic disease. All-cause mortality (ACM) and cardiovascular mortality (CVM) were explored by the Kaplan-Meier estimator and Cox multivariable regression, adopting recently defined SUA cut-offs for ACM (≥4.7 mg/dL) and CVM (≥5.6 mg/dL). Exploratory analysis across cardiometabolic subgroups and a sensitivity analysis using SUA/serum creatinine were performed as validation. SUA predicted ACM (HR 1.25 [1.12-1.40], p &lt; 0.001) and CVM (1.31 [1.11-1.74], p &lt; 0.001) in the whole study population, and according to TG strata: ACM in normotriglyceridemia (HR 1.26 [1.12-1.43], p &lt; 0.001) and hypertriglyceridemia (1.31 [1.02-1.68], p = 0.033), and CVM in normotriglyceridemia (HR 1.46 [1.23-1.73], p &lt; 0.001) and hypertriglyceridemia (HR 1.31 [0.99-1.64], p = 0.060). Exploratory and sensitivity analyses confirmed our findings, suggesting a substantial role of SUA in normotriglyceridemia and hypertriglyceridemia. In conclusion, we report that SUA can predict ACM and CVM in cardiometabolic patients without established cardiovascular disease, independent of TG levels

    The fraction of ionizing radiation from massive stars that escapes to the intergalactic medium

    Get PDF
    Whether stars could have driven the reionization of the intergalactic medium depends critically on the proportion of ionizing radiation that escapes the galaxies in which it is produced. Spectroscopy of gamma-ray burst (GRB) afterglows can be used to estimate the opacity to extreme ultraviolet (EUV) radiation along the lines-of-sight to the bursts. Assuming that long-duration GRBs trace the locations of the massive stars dominating EUV production, the average escape fraction of ionizing radiation can be calculated independently of galaxy size or luminosity. Here we present a compilation of H i column density (N HI ) measures for 140 GRBs in the range 1.6 < z < 6.7. Although the sample is heterogeneous, in terms of spectral resolution and signal-to-noise ratio, fits to the Ly α absorption line provide robust constraints on N HI , even for spectra of insufficient quality for other purposes. Thus we establish an escape fraction at the Lyman limit of (f esc ) ≈ 0.005, with a 98 per cent confidence upper limit of (f esc ) ≈ 0.015. This analysis suggests that stars provide a small contribution to the ionizing radiation budget at z < 5. At higher redshifts firm conclusions are limited by the small size of the GRB sample (7/140), but any decline in average H i column density seems to be modest. We also find no significant correlation of N HI with galaxy UV luminosity or host stellar mass. We discuss in some detail potential biases and argue that, while not negligible, systematic errors in f esc are unlikely to be more than a factor ~2 in either direction, and so would not affect the primary conclusions. Given that many GRB hosts are low-metallicity dwarf galaxies with high specific star-formation rates, these results present a particular problem for the hypothesis that such galaxies dominated the reionization of the Universe. © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
    corecore