399 research outputs found

    Simulations for single-dish intensity mapping experiments

    Full text link
    HI intensity mapping is an emerging tool to probe dark energy. Observations of the redshifted HI signal will be contaminated by instrumental noise, atmospheric and Galactic foregrounds. The latter is expected to be four orders of magnitude brighter than the HI emission we wish to detect. We present a simulation of single-dish observations including an instrumental noise model with 1/f and white noise, and sky emission with a diffuse Galactic foreground and HI emission. We consider two foreground cleaning methods: spectral parametric fitting and principal component analysis. For a smooth frequency spectrum of the foreground and instrumental effects, we find that the parametric fitting method provides residuals that are still contaminated by foreground and 1/f noise, but the principal component analysis can remove this contamination down to the thermal noise level. This method is robust for a range of different models of foreground and noise, and so constitutes a promising way to recover the HI signal from the data. However, it induces a leakage of the cosmological signal into the subtracted foreground of around 5%. The efficiency of the component separation methods depends heavily on the smoothness of the frequency spectrum of the foreground and the 1/f noise. We find that as, long as the spectral variations over the band are slow compared to the channel width, the foreground cleaning method still works.Comment: 14 pages, 12 figures. Submitted to MNRA

    HDAC4 is necessary for satellite cell differentiation and muscle regeneration

    Get PDF
    In response to injury, skeletal muscle exhibits high capacity to regenerate and epigenetics controls multiple steps of this process (Giordani et al., 2013). It has been demonstrated in vitro that completion of muscle differentiation requires shuttling of histone deacetylase 4 (HDAC4), a member of class IIa HDACs, from the nucleus to the cytoplasm and consequent activation of MEF2-dependent differentiation genes (McKinsey et al., 2000). In vivo, HDAC4 expression is up-regulated in skeletal muscle upon injury, suggesting a role for this protein in muscle regeneratio

    SOLE Project – Demonstration of a Multistatic and Multiband Coherent Radar Network

    Get PDF
    The aim of the NATO-SPS SOLE project is demonstrating the feasibility and the high performance of a radar network thanks to photonics. Indeed, the coherence offered by photonics makes the proposed distributed radar system capable of an efficient implementation of MIMO processing and ISAR imaging, enhancing the performance in terms of resolution and precision. The advantage of a fully coherent, multistatic radar system here is experimentally proven by a 5-time cross-range resolution enhancement thanks to MIMO processing, and in an efficient focusing in ISAR imaging

    HDAC4 is necessary for satellite cell differentiation and muscle regeneration

    Get PDF
    In response to injury, skeletal muscle exhibits high capacity to regenerate and epigenetics controls multiple steps of this process (Giordani et al., 2013). It has been demonstrated in vitro that completion of muscle differentiation requires shuttling of histone deacetylase 4 (HDAC4), a member of class IIa HDACs, from the nucleus to the cytoplasm and consequent activation of MEF2-dependent differentiation genes (McKinsey et al., 2000). In vivo, HDAC4 expression is up-regulated in skeletal muscle upon injury, suggesting a role for this protein in muscle regeneration. With the aim to elucidate the role of HDAC4 in skeletal muscle regeneration, we generate mice lacking HDAC4 in the satellite cells (HDAC4fl/fl;Pax7CE Cre). Lack of HDAC4 inhibits satellite cell differentiation. Despite having similar amount of sorted cells, HDAC4 KO satellite cells proliferate less and have less pax7 than controls. Importantly, muscle regeneration in vivo is impaired in HDAC4fl/fl;Pax7CE Cre mice. These results are confirmed by molecular analyses of the expression of myogenic markers. All together, these data delineate the importance of HDAC4 in muscle regeneration and suggest a protective role in response to muscle damage

    Planck Intermediate Results. IV. The XMM-Newton validation programme for new Planck galaxy clusters

    Get PDF
    We present the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high-z regime and testing RASS flags as indicators of candidate reliability. 14 new clusters were detected by XMM, including 2 double systems. Redshifts lie in the range 0.2 to 0.9, with 6 clusters at z>0.5. Estimated M500 range from 2.5 10^14 to 8 10^14 Msun. We discuss our results in the context of the full XMM validation programme, in which 51 new clusters have been detected. This includes 4 double and 2 triple systems, some of which are chance projections on the sky of clusters at different z. We find that association with a RASS-BSC source is a robust indicator of the reliability of a candidate, whereas association with a FSC source does not guarantee that the SZ candidate is a bona fide cluster. Nevertheless, most Planck clusters appear in RASS maps, with a significance greater than 2 sigma being a good indication that the candidate is a real cluster. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 10^-4 arcmin^2, with indication for Malmquist bias in the YX-Y500 relation below this level. The corresponding mass threshold depends on z. Systems with M500 > 5 10^14 Msun at z > 0.5 are easily detectable with Planck. The newly-detected clusters follow the YX-Y500 relation derived from X-ray selected samples. Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray luminosity on average for their mass. There is no indication of departure from standard self-similar evolution in the X-ray versus SZ scaling properties. (abridged)Comment: accepted by A&

    Planck Intermediate Results. IX. Detection of the Galactic haze with Planck

    Get PDF
    Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic "haze" at microwave wavelengths. The haze is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre, and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude. By combining the Planck data with observations from the WMAP we are able to determine the spectrum of this emission to high accuracy, unhindered by the large systematic biases present in previous analyses. The derived spectrum is consistent with power-law emission with a spectral index of -2.55 +/- 0.05, thus excluding free-free emission as the source and instead favouring hard-spectrum synchrotron radiation from an electron population with a spectrum (number density per energy) dN/dE ~ E^-2.1. At Galactic latitudes |b|<30 deg, the microwave haze morphology is consistent with that of the Fermi gamma-ray "haze" or "bubbles," indicating that we have a multi-wavelength view of a distinct component of our Galaxy. Given both the very hard spectrum and the extended nature of the emission, it is highly unlikely that the haze electrons result from supernova shocks in the Galactic disk. Instead, a new mechanism for cosmic-ray acceleration in the centre of our Galaxy is implied.Comment: 15 pages, 9 figures, submitted to Astronomy and Astrophysic

    Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect--cosmic infrared background correlation

    Get PDF
    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro--Frenk--White profile, we find that the radial profile concentration parameter is c500=1.000.15+0.18c_{500} = 1.00^{+0.18}_{-0.15}. This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6 σ\sigma, (ii) 3 σ\sigma, and (iii) 4 σ\sigma. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZCIB=1.2±0.3A_{\rm tSZ-CIB}= 1.2\pm0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.Comment: 18 pages, 16 figure

    The optical design of the Litebird middle and high frequency telescope

    Get PDF
    LiteBIRD is a JAXA strategic L-class mission devoted to the measurement of polarization of the Cosmic Microwave Background, searching for the signature of primordial gravitational waves in the B-modes pattern of the polarization. The onboard instrumentation includes a Middle and High Frequency Telescope (MHFT), based on a pair of cryogenically cooled refractive telescopes covering, respectively, the 89-224 GHz and the 166-448 GHz bands. Given the high target sensitivity and the careful systematics control needed to achieve the scientific goals of the mission, optical modeling and characterization are performed with the aim to capture most of the physical effects potentially affecting the real performance of the two refractors. We describe the main features of the MHFT, its design drivers and the major challenges in system optimization and characterization. We provide the current status of the development of the optical system and we describe the current plan of activities related to optical performance simulation and validation

    Viral Evolution and Cytotoxic T Cell Restricted Selection in Acute Infant HIV-1 Infection

    Get PDF
    Antiretroviral therapy-naive HIV-1 infected infants experience poor viral containment and rapid disease progression compared to adults. Viral factors (e.g. transmitted cytotoxic T- lymphocyte (CTL) escape mutations) or infant factors (e.g. reduced CTL functional capacity) may explain this observation. We assessed CTL functionality by analysing selection in CTL-targeted HIV-1 epitopes following perinatal infection. HIV-1 gag, pol and nef sequences were generated from a historical repository of longitudinal specimens from 19 vertically infected infants. Evolutionary rate and selection were estimated for each gene and in CTL-restricted and non-restricted epitopes. Evolutionary rate was higher in nef and gag vs. pol, and lower in infants with non-severe immunosuppression vs. severe immunosuppression across gag and nef. Selection pressure was stronger in infants with non-severe immunosuppression vs. severe immunosuppression across gag. The analysis also showed that infants with non-severe immunosuppression had stronger selection in CTL-restricted vs. non-restricted epitopes in gag and nef. Evidence of stronger CTL selection was absent in infants with severe immunosuppression. These data indicate that infant CTLs can exert selection pressure on gag and nef epitopes in early infection and that stronger selection across CTL epitopes is associated with favourable clinical outcomes. These results have implications for the development of paediatric HIV-1 vaccines
    corecore