1,000 research outputs found

    The order of the metal to superconductor transition

    Full text link
    We present results from large-scale Monte Carlo simulations on the full Ginzburg-Landau (GL) model, including fluctuations in the amplitude and the phase of the matter-field, as well as fluctuations of the non-compact gauge-field of the theory. {}From this we obtain a precise critical value of the GL parameter \kct separating a first order metal to superconductor transition from a second order one, \kct = (0.76\pm 0.04)/\sqrt{2}. This agrees surprisingly well with earlier analytical results based on a disorder theory of the superconductor to metal transition, where the value \kct=0.798/\sqrt{2} was obtained. To achieve this, we have done careful infinite volume and continuum limit extrapolations. In addition we offer a novel interpretation of \kct, namely that it is also the value separating \typeI and \typeII behaviour.<Comment: Minor corrections, present version accepted for publication in PR

    The Alexander-Orbach conjecture holds in high dimensions

    Full text link
    We examine the incipient infinite cluster (IIC) of critical percolation in regimes where mean-field behavior has been established, namely when the dimension d is large enough or when d>6 and the lattice is sufficiently spread out. We find that random walk on the IIC exhibits anomalous diffusion with the spectral dimension d_s=4/3, that is, p_t(x,x)= t^{-2/3+o(1)}. This establishes a conjecture of Alexander and Orbach. En route we calculate the one-arm exponent with respect to the intrinsic distance.Comment: 25 pages, 2 figures. To appear in Inventiones Mathematica

    The Persistence Length of a Strongly Charged, Rod-like, Polyelectrolyte in the Presence of Salt

    Full text link
    The persistence length of a single, intrinsically rigid polyelectrolyte chain, above the Manning condensation threshold is investigated theoretically in presence of added salt. Using a loop expansion method, the partition function is consistently calculated, taking into account corrections to mean-field theory. Within a mean-field approximation, the well-known results of Odijk, Skolnick and Fixman are reproduced. Beyond mean-field, it is found that density correlations between counterions and thermal fluctuations reduce the stiffness of the chain, indicating an effective attraction between monomers for highly charged chains and multivalent counterions. This attraction results in a possible mechanical instability (collapse), alluding to the phenomenon of DNA condensation. In addition, we find that more counterions condense on slightly bent conformations of the chain than predicted by the Manning model for the case of an infinite cylinder. Finally, our results are compared with previous models and experiments.Comment: 13 pages, 2 ps figure

    Photoactivatable prodrugs of butyric acid based on new coumarin fused oxazole heterocycles

    Get PDF
    New coumarin fused oxazoles were investigated as photosensitive units for carboxylic acid groups using butyric acid as a model compound. 6-Oxo-6H-benzopyrano[6,7-d]oxazol-8-yl)methyl derivatives possessing various (hetero)aromatic substituents at position 2 of the heterocyclic system were used in the synthesis of ester conjugates of butyric acid. Photolysis at selected wavelengths in methanol/HEPES buffer (80:20) solutions, monitored by HPLC/UV and 1H NMR, produced the complete release of butyric acid. The shorter irradiation times for cleavage at longer wavelengths occurred for the conjugate with a 4-oxo-4H-benzopyran-2-yl substituent and thus (6-oxo-2-(4-oxo-4H-benzopyran-2-yl)-6H-benzopyrano[6,7-d]oxazol-8-yl)methyl has potential as a candidate photosensitive moiety for butyric acid prodrugs.Thanks are due to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for financial support to the NMR portuguese network (PTNMR, Bruker Avance III 400-Univ. Minho), FCT and FEDER (European Fund for Regional Development)-COMPETE-QREN-EU for financial support to the research centre CQ/UM [PEst-C/QUI/UI0686/2013 (FCOMP-01-0124-FEDER-022716)] and a PhD grant to A.M.S.S. (SFRH/BD/80813/2011) is also acknowledged

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure

    The chromatin landscape of primary synovial sarcoma organoids is linked to specific epigenetic mechanisms and dependencies.

    Get PDF
    Synovial sarcoma (SyS) is an aggressive mesenchymal malignancy invariably associated with the chromosomal translocation t(X:18; p11:q11), which results in the in-frame fusion of the BAF complex gene SS18 to one of three SSX genes. Fusion of SS18 to SSX generates an aberrant transcriptional regulator, which, in permissive cells, drives tumor development by initiating major chromatin remodeling events that disrupt the balance between BAF-mediated gene activation and polycomb-dependent repression. Here, we developed SyS organoids and performed genome-wide epigenomic profiling of these models and mesenchymal precursors to define SyS-specific chromatin remodeling mechanisms and dependencies. We show that SS18-SSX induces broad BAF domains at its binding sites, which oppose polycomb repressor complex (PRC) 2 activity, while facilitating recruitment of a non-canonical (nc)PRC1 variant. Along with the uncoupling of polycomb complexes, we observed H3K27me3 eviction, H2AK119ub deposition and the establishment of de novo active regulatory elements that drive SyS identity. These alterations are completely reversible upon SS18-SSX depletion and are associated with vulnerability to USP7 loss, a core member of ncPRC1.1. Using the power of primary tumor organoids, our work helps define the mechanisms of epigenetic dysregulation on which SyS cells are dependent

    Effective interaction between helical bio-molecules

    Get PDF
    The effective interaction between two parallel strands of helical bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using computer simulations of the "primitive" model of electrolytes. In particular we study a simple model for B-DNA incorporating explicitly its charge pattern as a double-helix structure. The effective force and the effective torque exerted onto the molecules depend on the central distance and on the relative orientation. The contributions of nonlinear screening by monovalent counterions to these forces and torques are analyzed and calculated for different salt concentrations. As a result, we find that the sign of the force depends sensitively on the relative orientation. For intermolecular distances smaller than 6A˚6\AA it can be both attractive and repulsive. Furthermore we report a nonmonotonic behaviour of the effective force for increasing salt concentration. Both features cannot be described within linear screening theories. For large distances, on the other hand, the results agree with linear screening theories provided the charge of the bio-molecules is suitably renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog

    Photoproduction of D±D^{*\pm} mesons associated with a leading neutron

    Full text link
    The photoproduction of D±(2010)D^{*\pm} (2010) mesons associated with a leading neutron has been observed with the ZEUS detector in epep collisions at HERA using an integrated luminosity of 80 pb1^{-1}. The neutron carries a large fraction, {xL>0.2x_L>0.2}, of the incoming proton beam energy and is detected at very small production angles, {θn<0.8\theta_n<0.8 mrad}, an indication of peripheral scattering. The DD^* meson is centrally produced with pseudorapidity {η1.9|\eta| 1.9 GeV}, which is large compared to the average transverse momentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive DD^* production is 8.85±0.93(stat.)0.61+0.48(syst.)%8.85\pm 0.93({\rm stat.})^{+0.48}_{-0.61}({\rm syst.})\% in the photon-proton center-of-mass energy range {130<W<280130 <W<280 GeV}. The data suggest that the presence of a hard scale enhances the fraction of events with a leading neutron in the final state.Comment: 28 pages, 4 figures, 2 table
    corecore