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Modelling critical Casimir force induced
self-assembly experiments on patchy colloidal
dumbbells†

Arthur C. Newton,a T. Anh Nguyen,b Sandra J. Veen,b Daniela J. Kraft, c

Peter Schallb and Peter G. Bolhuis *a

Colloidal particles suspended in a binary liquid mixture can interact via solvent mediated interactions,

known as critical Casimir forces. For anisotropic colloids this interaction becomes directional, which

leads to rich phase behavior. While experimental imaging and particle tracking techniques allow

determination of isotropic effective potentials via Boltzmann inversion, the modeling of effective

interaction in anisotropic systems is non-trivial precisely because of this directionality. Here we extract

effective interaction potentials for non-spherical dumbbell particles from observed radial and angular

distributions, by employing reference interaction site model (RISM) theory and direct Monte Carlo

simulations. For colloidal dumbbell particles dispersed in a binary liquid mixture and interacting via

induced critical Casimir forces, we determine the effective site–site potentials for a range of experimental

temperatures. Using these potentials to simulate the system for strong Casimir forces, we reproduce the

experimentally observed collapse, and provide a qualitative explanation for this behavior.

1 Introduction

Colloidal particles suspended in a binary liquid mixture of
water and picoline (3-methylpyridine) experience an effective
attraction when the temperature is raised from below towards
the coexistence line of the binary mixture. As this universal
attraction between colloids occurs close to the critical point of
the binary liquid, it is commonly referred to as the critical
Casimir force.1,2 While the precise description of this force
between suspended colloidal particles is still under debate,3–6

this solvent mediated interaction is highly dependent on
temperature, with the range of the attraction increasing as
the temperature approaches the critical point.2,7 In contrast
to more common colloidal interactions such as electrostatic
or depletion interactions, this temperature dependence gives
precise control over the interactions between colloids. Previous
work employing critical Casimir forces showed that spherical
colloids can spontaneously phase separate into different colloidal
phases over a small range of temperature.7–9

Recent breakthroughs have made it possible to synthesize
anisotropic colloids10–13 and study their behavior in binary liquids.
These particles have an anisotropic shape, and/or interact via
directional potentials. Particles of the latter category, known as
‘‘patchy particles’’, are able to form colloidal molecules,12 and
open crystal structures.11 Suspensions of anisotropic colloidal
particles have, therefore, great potential for the assembly of
novel nano and micron-scale structures. In a recent paper we
showed that the critical Casimir force can induce directional
interactions between anisotropic dumbbell colloids.14 Controlling
the temperature leads to different structural morphologies, including
small clusters, strings, and aggregates. At temperatures very close to
the binary liquid coexistence line, a sudden collapse transition was
observed.14 A priori, it is not clear at all how these directional
interactions can be modeled. The aim of this work is to provide
an effective pair potential that is able to describe the behavior of
the dumbbell system as well as to provide physical insight.

Modeling colloidal systems via effective pair potentials has a
long history. A famous example is the DLVO theory that describes
the effective interaction in colloidal suspensions as a combination
of electrostatic repulsion and van der Waals attraction.15,16 More
recent examples include the depletion potential, induced by non-
adsorbing polymer or other depletants, and the critical Casimir
force itself.7,17 These potentials are fundamentally isotropic in
nature, allowing a description of the interaction as a potential
acting on the centers of mass of the two particles. This symmetry
allows extracting the effective pair potential by Boltzmann inversion
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of the radial distribution function obtained from experiments via
advanced optical imaging and particle tracking techniques. The
situation is more complex for anisotropically interacting particles
where such symmetry does not exist. One choice is to make the
potential angular dependent, which is for example done in models
such as the Kern–Frenkel model.18 Another option, which we follow
here, is to view the anisotropic particle as a rigid construction
consisting of several particles that each interact via an isotropic
potential. This is essentially a molecular viewpoint, where the
constituents of the molecule are isotropic spheres, glued together
to form a rigid anisotropic colloidal building block. We show that
this viewpoint is suitable for the dumbbell system under con-
sideration. We develop a simple model for the dumbbell inter-
actions based on an isotropic form of the effective critical Casimir
potential, which we then optimize, employing both reference
interaction site model (RISM) theory19–21 and direct Monte Carlo
simulations, in order to reproduce variants of experimental radial
distribution functions. These potentials are validated by comparing
to angular distributions and via the predicted phase behavior. The
obtained potential reproduces the different morphologies observed
far from the critical temperature remarkably well. In addition, the
potential gives an explanation for the structural collapse observed in
the experiments when the temperature approaches the coexistence
line of the binary fluid.

The remainder of the paper is as follows. In Section 2 we
introduce the experimental setup, the model, and the theoretical
and simulation methods. In Section 3 we present and discuss the
results. We end with concluding remarks.

2 Methods
2.1 Experiments

The colloidal patchy dumbbell particles, composed of sterically
stabilized PMMA spheres with a core fluorescently labelled
with NBD-MAEM and a non-fluorescent shell, were prepared
following the procedure laid out in ref. 14 and the ESI.† The
particles were suspended in a binary liquid mixture of
heavy water and picoline (3-methylpyridine, 3MP), with a
weight fraction c3MP = 0.25, below the critical composition,
cc = 0.28.22 At this composition, the hydrophobic spherical ends
prefer 3MP, while the hydrophilic shells prefer the water
component. Glass capillaries were filled with suspensions at
colloid volume fraction of 0.2%, and flame sealed to prevent
any composition change due to evaporation. Critical Casimir
interactions were induced by heating the suspensions to tem-
peratures DT = TCX � T below the coexistence temperature
TCX = 38.55 1C where the two solvent components 3MP and
water still form a homogeneous mixture. To minimize equili-
bration times, we first kept the suspension at DT = 5 1C, where
critical Casimir interactions are negligible and the particles do
not aggregate. As the suspension is not density matched,
particles sediment to the bottom of the capillary resulting in
a quasi-2D system.

We follow particle aggregation directly in real space by
imaging individual particles in an area of 104 mm � 104 mm

using confocal microscopy. For each measurement, a series of
at least 3000 images was recorded for sufficient statistics. To
ensure the same initial conditions (no clusters formed inside
the capillary) for all measurements, we always equilibrated the
system at DT = 5 1C for at least 15 minutes before raising the
temperature to the final desired value close to TCX. The images
were analyzed using IDL (Interactive Data Language) and the
positions of the centers of the fluorescently labelled spherical
ends are determined with an accuracy of 0.03 mm in the
horizontal, and 0.05 mm in the vertical direction. These data
sets underwent an identical analysis as the data obtained from
simulations, for consistency. Distinction of dumbbells in the
experiments is based on distances between spheres, which are
typically 0.2–0.3 mm smaller than between neighbouring spheres,
within locating accuracy and particle polydispersity. The colloidal
surface charge and Debye length for the prepared suspension
were determined using electrophoresis and conductivity experi-
ments. For more details we refer to ref. 14.

2.2 Dumbbell model and interaction potentials

Previous work has demonstrated that the aggregation beha-
viour of spherical colloids in near critical binary liquids can be
modelled via a superposition of the Casimir attraction and an
electrostatic repulsion.7,8 We extend this model towards dumb-
bells by modelling the particles as two touching fused hard
spheres with radius R = 1.15 mm. The distance between the centers
of mass of the spheres is thus equal to 2R. Every pair of spheres not
on the same dumbbell interacts via a simple potential:

U(r) = urep(r) + uatt(r), (1)

where r = ria � rjg is the center–center distance between two
spheres not belonging to the same dumbbell: sphere a = 1, 2 of
dumbbell i and sphere g = 1, 2 of dumbbell j. We assume that
the repulsion between particles is dominated by electrostatic
repulsion and a hard-sphere mechanical repulsion, so that
urep(r) = uHS(r) + uel(r), with the hard sphere uHS(r) potential
defined as

uHS ¼
0 if r4 2R

1 if r � 2R;

(
(2)

and the electrostatic repulsion as:7,23

uelðrÞ ¼
2pRs2lD2

ee0
e�ðr�2RÞ=lD ; (3)

where s is the surface charge density, lD is the Debye length, e is
the dielectric constant of the solvent (e = 69), and e0 is the electric
permittivity in vacuum. The surface charge density, s, and Debye
length, lD, have been measured via electrophoretic experiments
which yielded s = �0.188 mC cm�2, and lD = 24.3 nm. As the
diameter of the particle is roughly 2.3 mm, these numbers corre-

spond to a high repulsion (prefactor
2pRs2lD2

ee0
¼ 6:9� 103kBT )

that decays relatively quickly (lD = 0.0211R).
The attraction between two spherical particles is given by the

Casimir interaction, which at short distances is argued by
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Fisher and de Gennes to be of the form (using the Derjaguin
approximation):1,7

uattðrÞ ¼ uCasðrÞ ¼ �
2pRkBT

x
e�ðr�2RÞ=x; (4)

where x is the correlation length of the fluctuations in composition
of the near critical binary liquid. Note that the pre-factor is of the
form x�1. A consequence of this is that the pre-factor diverges for
small correlation lengths, which is slightly counter-intuitive as
the general observation is that particles become more strongly
aggregated close to the critical point (large x) suggesting a
stronger attraction between particles. However, due to the
strong electrostatic repulsion described above only the long
range effects of the Casimir attraction are important, which
cancels the diverging part of the Casimir potential.

The correlation length close to the critical point of the
binary liquid, [rC, TC] scales with the temperature as follows:7

xðDTÞ ¼ x0
DT
TC

� ��n
; (5)

where x0 is the correlation length of the non-critical system, TC

is the critical temperature, DT = TC � T is the distance between
the experimental temperature and the critical temperature, and
n = 0.63 is the relevant critical exponent. Clearly, the correlation
length diverges as the critical point is approached. Even when
the binary liquid is prepared slightly off-critical, this scaling of
the correlation length usually does approximate the behaviour
well. For our system the critical temperature is set to the
coexistence temperature TC = 38.55 1C. Therefore, the potential
is completely defined by the parameters R, s, lD, DT and x0. The
value of x0 is not known from experiments, and we therefore fit
this value in order to describe how the potential develops when
approaching the coexistence temperature.

Due to the size of the particles and because the system is not
density matched, the particles easily sediment to the bottom of
the sample. To mimic this situation we added a gravitational
potential in the simulations

ugravðrÞ ¼
rz

lgrav
kBT ; (6)

with rz the vertical height of the dumbbell center of mass with
respect to the bottom of the box and lgrav = kBT/DrVdbg with

Dr = 0.19 g cm�3 for PMMA in water/3MP mixture, Vdb ¼
8

3
pR3 and

g = 9.81 m s�2. Based on the buoyancy of the particles, we estimated
the gravitational length lgrav E 0.15R. Periodic boundaries were only
applied in the x and y directions, so that particles cannot sediment
below z = 0. In addition, in the experiments the glass surface can
also induce attraction, including critical Casimir forces2 and
can thus restrain particles to the surface. In this way, the system
becomes effectively quasi two dimensional, as is observed in the
experiments. To model this effect we added a square well
potential acting on each sphere of the dumbbell

usurfðrÞ ¼
0 if rz 4D

�esurf if rz � D;

(
(7)

with rz the vertical height of the sphere center of mass with
respect to the bottom of the box, the range D = 1.7R, and depth
esurf = 10kBT. This choice of parameters roughly reproduced the
observed average number of dumbbells sticking out of the
plane. Moreover, if a weaker wall interaction is used spurious
peaks arise in the y–f-distributions explained in eqn (12) below,
which are not present in the experimental distributions.

For the Monte Carlo simulations the total potential energy of
the dumbbell system is thus given by

Utot ¼
XN
j¼1

XN
io j

X2
a;g¼1

urep ria;jg
� �

þ uatt ria;jg
� �

þ
XN
i¼1

ugrav rið Þ þ
XN
i¼1

X2
a¼1

usurf riað Þ;

(8)

where ria,jg = ria � rjg is the center–center distance between two
spheres not belonging to the same dumbbell, and ri is the
center of mass of dumbbell i.

2.3 Potential optimization

Although the parameters of the potential are connected to
physical properties of the system as indicated in eqn (3) and
(4), the system is not solely determined by these properties.
Additional effects such as van der Waals forces and polymer
repulsion could also play a role in the interaction of colloids,
especially since these dumbbell particles are not synthesized to
minimize these effects. Previously8,9 the potential for spherical
particles was obtained via fitting the potential of mean force
obtained via inversion of the radial distribution function g(r). At
low density this inversion is simply u(r) = �kBT ln g(r), where kB

is Boltzmann’s constant. However, several problems arise for
anisotropic particles. While the one-to-one mapping between
radial distribution function (RDF) and the effective pair potential
still holds,21,24 the simple inversion of the radial distribution
function is not valid anymore.‡ Additional complications arise
due to the fact that not all particles are accounted for, because the
visualization via the microscope is limited to a plane. Moreover,
the intrinsic error of the tracking of the particles causes an error
in the particle positions. Finally, the polydispersity of the spheres
and the variation in the distance between spheres of the dumb-
bell, play a role. Clearly, we can not use a direct fitting procedure
to obtain the anisotropic potential. However, it is still possible
to find an optimal effective potential by predicting the radial
distribution function for anisotropic particles by simulation or
theory, and compare these predicted distributions to the experi-
mental one, and determine which potential parameters gives
the best match.

For this purpose we propose several distribution functions
to compare between simulations and experiment. From the
experimental imaging techniques we determine the 2D site–site

‡ This statement applies to the orientationally averaged distribution function. In
principle, one could invert the orientational and radial resolved RDF. However,
this requires an extremely accurate experimental (or numerical) multidimensional
data set.
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radial distribution gag(r) between sphere a = 1, 2 on dumbbell i
and sphere g = 1, 2 on a different dumbbell j, defined as

gag(r) = r�2hN(N � 1)d(ria)d(rjg � r)i, (9)

where d(r) denotes the Dirac delta function, r is 2D particle
density (the number of particles per area), and the angular
brackets denote an ensemble average over all configurations.
The probability to find a site g a distance r away from site a
(with a and g on different molecules) is thus 2prrgag(r). This
distribution can be connected with the well-known reference
interaction site model (RISM) integral equation theory for
molecular fluids.21 This distribution is estimated from the
experimental data by evaluating

gagðrÞ �
1

nf

Xnf
k

1

Nk Nk � 1ð Þ
XNk

io j

X2
a;g¼1

d ria;jg � r
� �
f ria; rjg
� � ; (10)

with nf the number of frames, Nk the number of dumbbells in
frame k, f (ria,rjg) denotes the fraction of the circle centered at
(ria and goes through rjg) that falls inside the microscope image.
This fraction corrects for the fact that particles outside the
image do not contribute.

In a similar way we also measure the minimum distance
radial distribution, gmd(r), where only the minimum distance
between all dumbbell pairs is counted. This distribution is
estimated from the experimental data by evaluating

gmdðrÞ �
1

nf

Xnf
k

XNk

io j

d min ri1; j1; ri1; j2; ri2; j1; ri2; j2
� �

� r
� �

Nk Nk � 1ð Þ f ria; rjg
� � ; (11)

where the min function returns the lower of its arguments.
These versions of the radial distribution minimize the effect of
the trivial neighbour. Note that a simple Boltzmann inversion
will lead to incorrect results in both cases.

We can also use a slightly different approach and focus
solely on the orientations the particles have with respect to each
other when they bind, by measuring the bond-angle distribu-
tions, which should be less dependent on the standard error of
determining distances given by the system. For neighboring
dumbbells we define two different bond angles, fij = arc cos(pi�vij)
and yij = arc cos(pi�pj) where the vij is the vector between the center
of mass of the spheres (on different dumbbells) closest to each
other, so that |vij| = min(ri1, j1,ri1, j2,ri2, j1,ri2, j2), and pi is the dumb-
bell vector of which the direction is given by the sphere that
defines vij (see Fig. 1).

Through these angles many different particle orientations
can be discerned and analyzed. The angular distribution is
given by

pðy;fÞ ¼ 1

nf

Xnf
k

XNk

io j2nn
d yij � y
� �

d fij � f
� �

; (12)

where second sum is over the bonded neighbors only.
In contrast to the radial distribution function of spherical

particles in a dilute suspension, none of the three distributions
eqn (10)–(12) are directly related to the effective pair potential via
a simple Boltzmann inversion, i.e. taking the negative logarithm

of the distribution function. Therefore, we perform many Monte
Carlo simulations with a predefined set of potential parameters,
{x0}, and subsequently find the distribution which fits best the
appropriate experimental distribution. To obtain a degree of
similarity between two distributions we use the Jensen–Shannon
divergence:

dJS ¼
X
i

PðiÞ log PðiÞ
MðiÞ þ

X
i

QðiÞ logQðiÞ
MðiÞ; (13)

where
P
i

is the sum over every bin i, P(i) and Q(i) are the

distributions from simulations and experiments respectively,

and MðiÞ ¼ 1

2
ðPðiÞ þQðiÞÞ. The potential parameters that give

the smallest DJS ¼
P

dJSðDTÞ, is used to construct the optimized
pair-potential in eqn (1), where the sum goes over the set of
temperatures used in experiment. Note that gmd(r) and gs(r) are
not normalized, so that the value for dJS is not bound by ln 2.

2.4 RISM theory

We employed the reference interaction site model (RISM)
theory as a first approximation to match the observed site–site
radial distribution functions to an underlying potential between
the dumbbell particles. While Munao et al.25 recently investigated
colloidal dumbbells in three dimensions, we followed Talbot and
Tildesley,26 who applied the RISM theory to 2D dumbbell systems.
Since the experimental system is only quasi 2D we do expect some
differences.

The 2D site–site correlation function is given by

gag(r) = r�2hN(N � 1)d(r1a)d(r2g � r)i, (14)

where d(r) denotes the Dirac delta function, r is the 2D particle
density (the number of particles per area), and the angular
brackets denote an ensemble average over all configurations.
The probability to find a site g a distance r away from site a
(with a and g on different molecules) is thus 2prrgag(r).

Setting the total correlation function hag(r) = gag(r) � 1, the
RISM theory defines the direct correlation function cag(r) by a
(2 � 2) Ornstein–Zernike matrix equation

ĥ(k) = x̂(k)ĉ(k)x̂(k) + rx̂(k)ĉ(k)ĥ(k), (15)

Fig. 1 Cartoon explanation of the angles f and y used to discern
configurations between dumbbells.
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where the hats denote 2D Fourier transforms, also known as
Hankel transforms,

f̂ ðkÞ ¼ 2p
ð1
0

f ðrÞJ0ðkrÞrdr (16)

f ðrÞ ¼ 1

2p

ð1
0

f̂ ðrÞJ0ðkrÞkdk; (17)

with J0(x) denoting the zeroth order Bessel function. The
elements of the x matrix are

oag(k) = dag + (1 � dag)J0(kl), (18)

with l the intramolecular distance between the centers of mass
of particles in one dumbbell. Because dumbbells are homo
dimers all site–site correlations are identical and the RISM
equation reduces to a single scalar equation:

ĥ(k) = ô(k)ĉ(k)ô(k) + 2rô(k)ĉ(k)ĥ(k), (19)

where ô(k) = 1 + J0(kl) and the density is now the sphere density
rather than the dumbbell density. Rearrangement leads to an
expression for the direct correlation function

ĉðkÞ ¼ ĥðkÞ
ôðkÞ2 þ 2rôðkÞĥðkÞ

: (20)

Like in any integral equation approach this OZ-like equation needs
a closure relation. Since we consider particles with long range
interactions (relative to the hard sphere interaction), a reasonably
good closure is the hypernetted chain (HNC) approximation27

g(r) = h(r) � 1 = e�bu(r)+h(r)�c(r). (21)

Eqn (20) and (21) form a closed set, and allow the computation
of the g(r) from a given u(r). The solution is obtained numerically,
by iteration, mixing in the previous solutions of h(r) at each
iteration step. The u(r) is optimized using the Jensen–Shannon
divergence of the computed final g(r) and the experimental g(r).
For comparison of the computed and experimental distributions,
the computed g(r) is convoluted with a Gaussian function of width
w, to mimic the experimental error. During the optimization x0 as
well as the width w were varied.

2.5 Simulation details

For the direct Monte Carlo simulations, we placed N = 100
dumbbell particles in a cubic box and applied periodic boundaries
in the x–y direction. The number of particles was chosen to
correspond roughly to the experimentally observed number of
dumbbells. The gravitational and square well potential acted in
the z-direction, as describe above. The size of the box was set to
L = 64R, chosen such that the number density of the cubic box
is r = 0.0004R�3, and the 2D number density r = 0.025R�2 =
0.02 mm�2. In order to minimize hysteresis during aggregation
we employed an annealing procedure. Starting far from TC, at
DT = 1.6 K where the attraction is very shallow, we performed
106 equilibration and 106 production cycles, where a cycle
consist of moving each particle once on average, before increasing
the temperature with 0.05 K. This procedure was repeated until
DT = 0.85 K, corresponding to a strong Casimir attraction. The

Monte Carlo moves were comprised of single particle translation
and/or rotation moves, augmented with cluster moves.28 A MC
cycle consists of N particle rotations or translations, and N cluster
moves. Cluster movers were performed using the algorithm in
ref. 29. The maximum translation and rotation were optimized to
achieve an acceptance ratio between 20% and 70%. We performed
this scheme for x0 = 9.2 � 10�4 mm to x0 = 20.7 � 10�4 mm with
increments Dx0 = 1.15 � 10�5 mm.

For the diffusion limited aggregation simulations to study
the collapse transition from a network structure, we first start
with cluster moves only, so that the clusters do not relax
internally. A particle belongs to a cluster if its center of mass
is within a distance 2R + 0.23 = 2.55 mm of the center of mass of
any particle in that cluster. We then relaxed the obtained DLA
network structure using single particle moves and rotations
with very small maximal translation and rotation displacements,
until the local energy minimum was reached.

3 Results and discussion
3.1 Potential optimization

3.1.1 RISM approach. As an initial step we used the RISM
approach to optimize the potential, using the Jensen Shannon
divergence between the experimental and predicted site–site
RDFs. Note that in order to properly compare experimental
distributions to either theoretical predictions or simulations,
the experimental error needs to be taken into account. This
experimental error arises from uncertainty in measuring the
positions of the center of the spheres, polydispersity in particle
size and variation in the intramolecular distance between the
dumbbell spheres. As the size of the particles is around 2.3 mm,
the range of the attraction far from the coexistence temperature
(DT E 1 K) point given by the optimized potential is small
relative to the size of the particle. In contrast, the broad first
neighbour shell peak in the experimental gmd(r) and gs(r) �
gag(r) would suggest a much larger attractive range. However,
the observed fluctuations in bond distance of two bound
dumbbells in the experimental image sequence are commensurate
with the width of the optimized potential, and not with the broad
first peak in the radial distribution. This suggests that the broadness
of the peak is introduced by the polydispersity in particle size and
shape, and the measurement error. To mimic this error we convolve
the RDF with a Gaussian function with width w. The number
density in the plane is set to r = 0.025 mm�2.

The results of the RISM optimization are shown in Fig. 2.
Fig. 2c shows the Jensen–Shannon divergence for the different
x0 and w values. The global minimum is obtained around
x0 = 16.3 � 10�4 mm and w = 0.16R (meaning w = 0.08 in units
of the diameter). The potentials corresponding to the optimum
are shown in Fig. 2a. Note that the potentials are relatively short
ranged compared to the particle size. Far from the coexistence
temperature DT = 1.55 K the attraction has a minimum of about
0.5kBT. As the temperature increases, the potential gradually
deepens and widens. The predicted and broadened site–site
g(r)s are shown in Fig. 2b together with the experimental
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measurements. There are some differences with the experimental
RDFs, e.g. in the height of the first peak, and some of the more
detailed features. However, the location of the peaks and the
qualitative behavior is in agreement. Note that the fit is global,
and optimizes all potentials simultaneously.

3.1.2 Simulation approach. Next, we used direct Monte
Carlo simulations to globally fit the potentials to the entire
set of measured distributions for the minimum distance radial
distribution function gmd(r) as well as the site–site radial distribution
function gs(r) = gag(r). These simulations are expected to be more

accurate compared to the RISM results, as they are performed in 3D,
and mimic the experimental situation to a much better degree.
Again the predicted radial distribution functions were convoluted
with a Gaussian of width w to take into account the effect of the
experimental measurement errors.

In Fig. 3 the DJS values found for various x0 and w are plotted
when using gmd(r) to optimize which demonstrates that
x0 = 16.5 � 10�4 mm = 1.65 nm and w = 0.18R yields the best
fit. This value defines the effective pair sphere–sphere potential
given by eqn (1) over the entire temperature range. Fitting
to the gs(r) radial distribution also yielded a fitted value of
x0 = 16.5 � 10�4 mm. The value of x0 is on the same order as has
been found in previous work.30 The site–site effective pair
potentials uij(r) are plotted in Fig. 3 clearly showing the weak
interaction at low temperature DT = 1.55 K which deepens and
develops a longer range when the temperature is raised closer
to the coexistence temperature.

The corresponding gmd(r) and gs(r) are presented in Fig. 3c
and d. As in the case for the RISM optimization, a reasonable
match is found for most temperatures. However, there are also
differences with the RISM results, due to the approximations
made in the theory. For instance, it seems that the optimized
potential is too weak for DT = 1.55 K and DT = 1.35 K. while a
very good match is found for higher temperatures for both
gmd(r) and gs(r), while in the RISM optimization it is the other
way around. Also the second peak in gmd(r) is well reproduced
at high temperatures. Several features in gs(r), e.g. near r = 3.2 mm
and r = 3.9 mm, are not well reproduced, possibly because the
model potential, although capable of describing the main features
of the dumbbell particles, can not account for every signature in the
radial distributions as the particle shape can deviate from the
simple modeled one. Moreover, the experimental data set itself
is of limited size. In Appendix A we provide several geometrical
explanations for these features.

3.2 Validation of the optimized potential

To validate the optimized potential, we compare experimental
and simulation snapshots as well as the simulation predictions
of the angular distributions with experimental ones, and compute
the location of the condensation transition with the second virial
coefficient approach.

In Fig. 4 the angular distributions are shown. The features of
the distributions significantly change with temperature. At low
temperature, T = 37.00 1C, where the attraction is minimal, the
majority of the population is in the top right corner at high y
and high f, which corresponds to bonds being formed in a
linear orientation. As temperature increases, the degree of
aggregation also increases and the population shifts from high
y and high f, to two peaks at y = 01 and f = 701 or f = 1101,
which corresponds to a more closed packed bond formation.
The corresponding optimized angular distributions obtained
via simulation are also presented. The simulated distributions
show the same trend as the experimental ones, i.e. the population
shifts from a linear orientation towards more close packed
configurations, with a hexagonal order similar to that of single
spheres. Indeed, the two most right pictures represent high

Fig. 2 (a) optimized potentials obtained from the measured site–site RDFs
using RISM. (b) Comparison of predicted (lines) with experimental (points) site–
site radial distribution functions. (c) Jensen–Shannon divergence for different x0

and w values. Note that the w values are in units of diameter of the particle.
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temperature angular distributions, where the peaks in the y–f-
plane occur at multiples of 601. The experimental and simu-
lated distributions are qualitatively the same, although peaks
are more pronounced for the simulation, most likely caused by
incomplete equilibration of the experimental system.

Images from experiments in Fig. 5, showing the aggregation
of particles at several temperatures, are qualitatively well repro-
duced by simulation. While no aggregation is observed for
temperatures far from TC, particles start to aggregate into
clusters as the temperature is increased toward the binary
liquid coexistence line. The experimental aggregation tempera-
ture is found to be around DT = 0.95 K, something that is
reproduced in the simulations.

Since the optimized potential is very short ranged, it is not
so easy to understand this onset of aggregation. A simple but
effective predictive measure for aggregation is the second virial
coefficient, B2:31,32

B2 ¼
1

2

ð
dr

ð
dO 1� e�budbðr;OÞ
� �

; (22)

where r is now the interparticle vector between centers of
mass of two dumbbells, dO denotes the relative orientation
of the dumbbells in 3D, and the inter-molecular potential is

udbðr;OÞ ¼
P2
a;g¼1

u ragðr;OÞ
� �

, with u(rag) the effective site–site

pair potential, and rag the distance between the centers of mass
of the dumbbell spheres a and g each on different dumbbells.
Positioning one of the particles in the origin with its intra-
molecular vector along the z-axis, the integration is thus over all
positions of orientations of the second dumbbell. Note that we
can evaluate the integral in 3D as well as 2D, since the colloidal
system can aggregate also in the bulk. Of special interest is the
reduced second virial coefficient, B2* = B2/BHDB

2 where BHDB
2 is

the second virial coefficient for hard dumbbells.26,33,34 This
reduced second virial coefficient provides a rough indication of
the aggregation behavior. When B2* becomes negative, attraction
begins to dominate the repulsive interactions. In Fig. 6 the
numerically integrated B2* for the optimized potential is shown,
for both the 2D and 3D cases. B2* becomes zero around DT = 1.0 K
for the 3D case, and around DT = 0.95 K for the 2D case, which is

Fig. 3 (a) Optimized potential for 6 values of DT when x0 = 16.5� 10�4 mm. As the critical point is approached, a minimum is developed. Note the short ranged
nature of the potential due to the relative size of the correlation length and the size of the particles. Inset shows the divergence of the correlation length close to
TC. (b) Sum of dJS as a function of x0 when fitting gmd(r) demonstrating that the minimum is indeed at x0 = 16.5� 10�4 mm. Note that DJS is not bounded by the
usual value of ln 2 due to the fact that the radial distributions are not normalized. The sharp increase at higher x0 is due to the fact that complete aggregation
occurs for these values. (c) Fitted gmd(r) and (d) fitted gs(r) for x0 = 16.5 � 10�4 mm demonstrating that for this value of x0 simulations (lines) reproduce the main
features and trend of the experimental distributions (points) very well. Note that the w values are in units of diameter of the particle.
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the aggregation temperature in experiments. Further decrease of
DT causes a fast drop of the B2* indicating that the system is
undergoing a condensation/aggregation transition in this
temperature region. For completeness, we also show in Fig. 6

the reduced second virial coefficient for a system of single
spheres interacting via the same effective potential. Clearly, the
behavior is roughly similar, indicating that the geometry of the
dumbbell only mildly influences the aggregation transition.

Fig. 4 (a) Experimental and (b) simulation y–f angle probability distributions for, from left to right, DT = 1.55 K, 1.15 K, 0.95 K, and 0.05 K. While there are
differences in the angles sampled for experiments and simulation, the main features of the experimental distributions are clearly reproduced in
simulations. Far from the critical point linear configurations dominate, indicated by y = 1801 and f = 1801. As TC is approached, the population shifts to
y = 01 and f = 701 or f = 1101. At high temperature experiment and simulation do show peaks in the y–f-plane at multiples of 601. The distributions are
qualitatively the same, although the peaks are more pronounced for the simulation, most likely caused by incomplete equilibration of the experimental
system.

Fig. 5 Snapshots of (a) the experiment and (b) simulation for from left to right DT = 1.55, 1.15, 0.95 and 0.55 K, demonstrating that the correct
morphology for every temperature is (roughly) obtained.
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Since the potentials are short-ranged a possible colloidal
liquid–vapor coexistence might be metastable with respect to
crystallization. Inspecting the potentials shown in Fig. 3, a
rough estimate suggests a potential range of B0.15 mm, or
around 6% of the particles diameter. A more careful mapping
using the extended corresponding-states criterion by Noro and
Frenkel31 leads to an effective range of 0.04–0.05 (in units of the
diameter). As the criterion for a stable liquid–vapor coexistence
is around 14%,31 it is likely that the aggregated system would
relax to a colloidal vapor–solid coexistence, when equilibrated.
Interestingly, when DT is decreased further (DT o 0.1), the
potential becomes shallower, while the range of the potential
will widen. This behavior of the potential might explain the
collapse as discussed in the next section.

Finally, we show in Appendix B that an optimization of the
Debye length lD in the model leads to values close to the
experimentally measured Debye length, giving an independent
validation of the model.

3.3 Collapse from network to compact state

Critical Casimir forces can clearly induce aggregation between
anisotropically shaped colloids. Although this aggregation is in
principle reversible with temperature, the morphology of the final
structure still highly depends on the protocol of the experiment.
When a temperature ramp is used that takes the temperature from
DT = 5.0 K immediately to DT = 0.5 K, thus inducing a very strong
attraction, the resulting structure can become (partially) kinetically
trapped in a metastable state from which it is usually very difficult
to escape. In general one can anneal such a trapped state by
weakening the attraction again (assuming the attraction is rever-
sible in practice) so that the particles unbind again and the system
can escape from the metastable trapped state.

While the range of the Casimir attraction, as determined by
x, monotonically increases upon approaching the coexistence
temperature, due to the functional form of eqn (4) the minimum
of the potential does not behave monotonically with temperature,
and in fact reaches a maximum depth before becoming more
shallow again (see the inset of Fig. 7a). This particular feature of
the potential leads to the observed experimental behavior of a
structural collapse for temperatures close to the coexistence line.
In Fig. 8 a sequence of snapshots is shown of such a collapse
transition, from an extended network to a more compact structure.
The system relaxes over several minutes, where the initial
configuration on the left is stuck in a metastable state with
more linear chain-like structures. For temperatures very close to
TC, (DT E 0.05 K), the structure relaxes towards a more compact
structure as shown on the right in Fig. 8.

We can model this collapse transition by preparing a non-
equilibrium network-like structure using a diffusion limited
aggregation scheme (see Methods), in which we only perform
MC cluster moves, which are always accepted provided there is
no hard core overlap. In this approach we ignore any influence
of hydrodynamic effects on the kinetics. A cluster is defined as
a set of contiguous particles, where we consider two dumbbells
to be contiguous when any two spheres of the dumbbell are
closer than 0.2R. Starting from a random gas-like configuration,
this procedure quickly results in a network structure in which
the particles have not been allowed to equilibrate due to the fact
that only cluster moves are used. Subsequently, this network
structure is quenched into a local energy minimum dictated by
the optimized pair potential at DT = 0.5 K, employing only local
single particle MC moves with small translation and rotation
step sizes, such that the system becomes truly trapped in this
network structure (see Fig. 8). Repeating this procedure five
times generates five independent initial structures which are
then further heated to the temperature of interest and subsequently
relaxed via single particle translation and rotation MC moves with
small step sizes (dt = 0.02R, dr = 0.03 rad) for 107 MC cycles, where
every MC cycle has Npart translation and rotation moves. This
roughly corresponds to an experimental relaxation of several
minutes.35 Snapshots of the resulting collapsed structures are
shown in Fig. 8.

The analysis of these simulations is summarized in Fig. 7.
The top right panel, Fig. 7b, shows the relaxation of the total
energy versus simulation time for several values of DT. It is clear
that when the attraction is still short ranged, the potential does
not allow equilibration of this structure to a more compact
configuration, because the dumbbells only feel their local
neighbourhood which is already in a deep minimum. However,
as the correlation length quickly grows at very small DT, the pair
interaction also becomes more extended. Therefore, the particles
have more ‘wiggle’ room within the potential well, allowing the
Casimir force to induce a full collapse of the structure, thereby
lowering the energy of the system significantly. The energy per
particle normalized to the minimum (Etot(UminN)�1), is plotted in
Fig. 7c and clearly shows that the structure collapses only
for low DT, and thus for longer ranged attractions at small
DT, a particle thus effectively interacts with more neighbors.

Fig. 6 Numerical calculation of the reduced second virial coefficient
B2* = B2/BHDB

2 for the optimized potential for the dumbbell model in 3D
(green circles), and in 2D (purple circles). For comparison B2* = B2/BHS

2 for
single spheres in 3D is also shown (blue circles). The B2* becomes negative
around DT E 0.95 K for the dumbbells, which is also the aggregation
temperature in experiments. Further decrease of DT causes a fast drop of
the B2* indicating that the experiments are close to the vapor–liquid
transition in this region. Of course, for very strong attraction (lower DT),
crystallization probably occurs.
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The relaxation of the potential energy over time is shown in
Fig. 7d, also demonstrating that indeed the energy relaxes
faster for small DT.

4 Conclusions

We have demonstrated that the experimentally observed Casi-
mir induced self-assembly of colloidal dumbbells14 can be
modelled with a relatively simple potential form. We optimized
this potential to reproduce both the minimum distance and
site–site radial distribution function. The overall agreement
between simulation and experimentally observed radial and
angular distributions and structures suggests that the effective
pair potential sufficiently can describe the interaction between
colloidal dumbbells, at least for short-ranged potentials. For
temperatures very close to the coexistence line, where the
interaction becomes large (but finite), probably an effective
pair potential is insufficient to describe the interaction as many
body effects become important. Additionally, we have shown
that the divergence of the correlation length, together with

the weakening of the potential depth is able to explain the
experimentally observed collapse of locally stuck network
structures into more compact configurations. These simulations
allowed us to understand the experimentally observed structures
from a simple pair potential model based on sphere–sphere
interactions of the dumbbells. Moreover, we identify the experi-
mental structures as partially out-of-equilibrium configurations.
Future work might address the characterization of the structure
and dynamics of these formed clusters, for instance by using the
methods of ref. 36 and 37.

Colloidal patchy dumbbells with one patch were also considered
by Avvisati et al.38 Their model represented an amphiphilic
dumbbell, which can self-assembly in e.g. micelles, bilayers, or
vesicles. In contrast, our dumbbell particles have an attractive
patch on either side, resulting in network-like structures and
large clusters.

The universal nature of the Casimir force offers opportunities
for other anisotropic colloidal systems. Future prospects entail
the further modification of the particle shape and physio-
chemical surface properties to induce more complex structure
formation.

Fig. 7 (a) Optimized potential for DT close to TC, DT = 0.2 K (blue), 0.05 K (yellow), 0.03 K (red), 0.01 K (purple), showing that due to the prefactor in
eqn (4) the potential becomes very long ranged and flatter for small DT, leading to the particles becoming more motile. Inset shows how the potential
minimum increases close to TC. (b) Relaxation of the total energy divided by minimum of attractive well over time for DT = 0.01 K (red), 0.02 K (orange),
0.04 K (cyan) and 0.3 K (blue) starting from five different trapped network structures. (c) Sudden increase close to TC in average Etot(UminN)�1 at the final
time-step for each DT which is a measure for the number of interactions per dumbbell. (d) Slope of Etot divided by Umin over time demonstrating that
relaxation of energy is significantly higher close to the critical point.
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Finally, we note that our potential optimization approach is
independent of the origin of the interaction, and can be applied
to other colloidal systems.

Appendix
A Geometric interpretation of additional peaks in
experimental g(r)

By geometric analysis and inspecting the experimental snap-
shots, we propose three different configurations of dumbbell
pairs that can contribute to the second neighbor peaks. These

configurations, labeled C1, C2 and C3 are shown in Fig. 9.
Setting the diameter of a sphere to 2.3 mm, the distance between
two spheres in a dumbbell also to 2.3 mm and the minimum of
the potential between two spheres is at rmin = 2.5 mm, means that
d23 in C1 is around 3.4 mm, which would explain the peak seen for
the experimental data around this value at DT = 1.15 K and DT =
1.10 (see Fig. 3). However, in an equilibrium MC simulation, this
is not a stable configuration, as it will quickly progress to either
C3 or even further to C2. This demonstrates that in experiments
particles in meta-stable states do not always easily find the local
minimum, a fact that we also use in the DLA simulations where
particles indeed are not allowed to relax. In C2, d14 = 4 mm, which
indeed also corresponds to a peak in the experimental data, and a
broad shoulder in the simulation data (see Fig. 3). In C3, d24 =
4.7 mm, which appears in both simulation and experimental
g(r) as a distinct peak. Due to the simple Gaussian error in the
calculation of distances in the simulation, the peaks due to C2
and C3 second neighbor configurations are mixed smoothly,
which does not need to be the case in reality.

B Dependence RISM optimization on Debye length

In the potential model we have only one free parameter that we
optimize. Other important parameter such as the Debye length

Fig. 8 (a) Series of snapshots for a network-like structure close to the critical point. From left to right, we can see the structure relaxing towards a more
compact structure facilitated by the long range nature of the Casimir force. (b) Series of snapshots for a network like structure from simulations at DT =
0.01 K modelling the collapse seen in experiments. Clearly, the structure fully collapses when the correlation length increases at DT = 0.01 K. At this point
the range of the Casimir attraction is long enough such that the particles further apart begin to (partially) relax. If the correlation length remains small,
such relaxation is not observed on this time-scale. Note that the system does not fully relax, as there are still multiple clusters.

Fig. 9 Possible configurations that contribute to the second neighbor
peaks based on inspection of the experimental snapshots.
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have been established experimentally. Still, it is interesting to
investigate how sensitive the optimization is to changes in the
Debye length. Therefore, we applied the RISM optimization to
several values of the Debye length lD = 0.020, 0.021, 0.022,
0.023, 0.024, 0.025, 0.026, 0.027, 0.028, 0.029 mm. In this
optimization we kept the Gaussian error estimate to w = 0.08,
which turned out optimal for all lD. All other parameters were
set as in Section 3.1.1. The results of the optimization is shown
in Fig. 10. The optimized value x0 changes substantially with lD.
This is easily understood, since a longer Debye length implies a
longer ranged repulsion, and hence a longer ranged Casimir
force is needed to compensate. Strikingly however, the optimal
DJS value is obtained for lD, which is actually not far away from
the experimental value lD = 0.0243 mm, giving an independent
validation of the model.
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