735 research outputs found
Minimax Current Density Coil Design
'Coil design' is an inverse problem in which arrangements of wire are
designed to generate a prescribed magnetic field when energized with electric
current. The design of gradient and shim coils for magnetic resonance imaging
(MRI) are important examples of coil design. The magnetic fields that these
coils generate are usually required to be both strong and accurate. Other
electromagnetic properties of the coils, such as inductance, may be considered
in the design process, which becomes an optimization problem. The maximum
current density is additionally optimized in this work and the resultant coils
are investigated for performance and practicality. Coils with minimax current
density were found to exhibit maximally spread wires and may help disperse
localized regions of Joule heating. They also produce the highest possible
magnetic field strength per unit current for any given surface and wire size.
Three different flavours of boundary element method that employ different basis
functions (triangular elements with uniform current, cylindrical elements with
sinusoidal current and conic section elements with sinusoidal-uniform current)
were used with this approach to illustrate its generality.Comment: 24 pages, 6 figures, 2 tables. To appear in Journal of Physics D:
Applied Physic
ASCR/HEP Exascale Requirements Review Report
This draft report summarizes and details the findings, results, and
recommendations derived from the ASCR/HEP Exascale Requirements Review meeting
held in June, 2015. The main conclusions are as follows. 1) Larger, more
capable computing and data facilities are needed to support HEP science goals
in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of
the demand at the 2025 timescale is at least two orders of magnitude -- and in
some cases greater -- than that available currently. 2) The growth rate of data
produced by simulations is overwhelming the current ability, of both facilities
and researchers, to store and analyze it. Additional resources and new
techniques for data analysis are urgently needed. 3) Data rates and volumes
from HEP experimental facilities are also straining the ability to store and
analyze large and complex data volumes. Appropriately configured
leadership-class facilities can play a transformational role in enabling
scientific discovery from these datasets. 4) A close integration of HPC
simulation and data analysis will aid greatly in interpreting results from HEP
experiments. Such an integration will minimize data movement and facilitate
interdependent workflows. 5) Long-range planning between HEP and ASCR will be
required to meet HEP's research needs. To best use ASCR HPC resources the
experimental HEP program needs a) an established long-term plan for access to
ASCR computational and data resources, b) an ability to map workflows onto HPC
resources, c) the ability for ASCR facilities to accommodate workflows run by
collaborations that can have thousands of individual members, d) to transition
codes to the next-generation HPC platforms that will be available at ASCR
facilities, e) to build up and train a workforce capable of developing and
using simulations and analysis to support HEP scientific research on
next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio
Observations of Microwave Continuum Emission from Air Shower Plasmas
We investigate a possible new technique for microwave measurements of
ultra-high energy cosmic ray (UHECR) extensive air showers which relies on
detection of expected continuum radiation in the microwave range, caused by
free-electron collisions with neutrals in the tenuous plasma left after the
passage of the shower. We performed an initial experiment at the AWA (Argonne
Wakefield Accelerator) laboratory in 2003 and measured broadband microwave
emission from air ionized via high energy electrons and photons. A follow-up
experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004
confirmed the major features of the previous AWA observations with better
precision and made additional measurements relevant to the calorimetric
capabilities of the method. Prompted by these results we built a prototype
detector using satellite television technology, and have made measurements
indicating possible detection of cosmic ray extensive air showers. The method,
if confirmed by experiments now in progress, could provide a high-duty cycle
complement to current nitrogen fluorescence observations of UHECR, which are
limited to dark, clear nights. By contrast, decimeter microwave observations
can be made both night and day, in clear or cloudy weather, or even in the
presence of moderate precipitation.Comment: 15 pages, 13 figure
Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
Anesthesia residents using in situ simulation to educate operating room nursing personnel on high risk, low frequency anesthetic events
The cost-effectiveness of a patient centred pressure ulcer prevention care bundle: findings from the INTACT cluster randomised trial
Background: Pressure ulcers are serious, avoidable, costly and common adverse outcomes of healthcare. Objectives: To evaluate the cost-effectiveness of a patient-centred pressure ulcer prevention care bundle compared to standard care. Design: Cost-effectiveness and cost-benefit analyses of pressure ulcer prevention performed from the health system perspective using data collected alongside a cluster-randomised trial. Settings: Eight tertiary hospitals in Australia. Participants: Adult patients receiving either a patient-centred pressure ulcer prevention care bundle (n = 799) or standard care (n = 799). Methods: Direct costs related to the intervention and preventative strategies were collected from trial data and supplemented by micro-costing data on patient turning and skin care from a 4-week substudy (n = 317). The time horizon for the economic evaluation matched the trial duration, with the endpoint being diagnosis of a new pressure ulcer, hospital discharge/transfer or 28 days; whichever occurred first. For the cost-effectiveness analysis, the primary outcome was the incremental costs of prevention per additional hospital acquired pressure ulcer case avoided, estimated using a two-stage cluster-adjusted non-parametric bootstrap method. The cost-benefit analysis estimated net monetary benefit, which considered both the costs of prevention and any difference in length of stay. All costs are reported in AU144.91 (95%CI: 246.08) more per patient than standard care. The largest contributors to cost were clinical nurse time for repositioning and skin inspection. In the cost-effectiveness analysis, the care bundle was estimated to cost an additional 144,525) per pressure ulcer avoided. This estimate is highly uncertain. Length of stay was unexpectedly higher in the care bundle group. In a cost-benefit analysis which considered length of stay, the net monetary benefit for the care bundle was estimated to be −3,900, −$1,175) per patient, suggesting the care bundle was not a cost-effective use of resources. Conclusions: A pressure ulcer prevention care bundle consisting of multicomponent nurse training and patient education may promote best practice nursing care but may not be cost-effective in preventing hospital acquired pressure ulcer
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
- …
