256 research outputs found

    Precursor Synthesis and Properties of Nanodispersed Tungsten Carbide and WC:nC Nanocomposites

    Get PDF
    This work was supported by Act 211 Government of the Russian Federation, agreement No. 02.A03.21.0006

    Flow-distributed spikes for Schnakenberg kinetics

    Get PDF
    This is the post-print version of the final published paper. The final publication is available at link.springer.com by following the link below. Copyright @ 2011 Springer-Verlag.We study a system of reaction–diffusion–convection equations which combine a reaction–diffusion system with Schnakenberg kinetics and the convective flow equations. It serves as a simple model for flow-distributed pattern formation. We show how the choice of boundary conditions and the size of the flow influence the positions of the emerging spiky patterns and give conditions when they are shifted to the right or to the left. Further, we analyze the shape and prove the stability of the spikes. This paper is the first providing a rigorous analysis of spiky patterns for reaction-diffusion systems coupled with convective flow. The importance of these results for biological applications, in particular the formation of left–right asymmetry in the mouse, is indicated.RGC of Hong Kon

    Influence of Stefan blowing on nanofluid flow submerged in microorganisms with leading edge accretion or ablation

    Get PDF
    The unsteady forced convective boundary layer flow of viscous incompressible fluid containing both nanoparticles and gyrotactic microorganisms, from a flat surface with leading edge accretion (or ablation), is investigated theoretically. Utilizing appropriate similarity transformations for the velocity, temperature, nanoparticle volume fraction and motile microorganism density, the governing conservation equations are rendered into a system of coupled, nonlinear, similarity ordinary differential equations. These equations, subjected to imposed boundary conditions, are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order numerical method in the MAPLE symbolic software. Good agreement between our computations and previous solutions is achieved. The effect of selected parameters on flow velocity, temperature, nano-particle volume fraction (concentration) and motile microorganism density function is investigated. Furthermore, tabular solutions are included for skin friction, wall heat transfer rate, nano-particle mass transfer rate and microorganism transfer rate. Applications of the study arise in advanced micro-flow devices to assess nanoparticle toxicity

    Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties

    Get PDF
    A mathematical model is developed for stagnation point flow toward a stretching or shrinking sheet of liquid nano-biofilm containing spherical nano-particles and bioconvecting gyrotactic micro-organisms. Variable transport properties of the liquid (viscosity, thermal conductivity, nano-particle species diffusivity) and micro-organisms (species diffusivity) are considered. Buongiorno’s two-component nanoscale model is deployed and spherical nanoparticles in a dilute nanofluid considered. Using a similarity transformation, the nonlinear systems of partial differential equations is converted into nonlinear ordinary differential equations. These resulting equations are solved numerically using a central space finite difference method in the CodeBlocks Fortran platform. Graphical plots for the distribution of reduced skin friction coefficient, reduced Nusselt number, reduced Sherwood number and the reduced local density of the motile microorganisms as well as the velocity, temperature, nanoparticle volume fraction and the density of motile microorganisms are presented for the influence of wall velocity power-law index (m), viscosity parameter (c2), thermal conductivity parameter (c4), nano-particle mass diffusivity (c6), micro-organism species diffusivity (c8), thermophoresis parameter (Nt), Brownian motion parameter (Nb), Lewis number (Le), bioconvection Schmidt number (Sc), bioconvection constant (σ) and bioconvection PĂ©clet number (Pe). Validation of the solutions via comparison related to previous simpler models is included. Further verification of the general model is conducted with the Adomian decomposition method (ADM). Extensive interpretation of the physics is included. Skin friction is elevated with viscosity parameter (c2) whereas it is suppressed with greater Lewis number and thermophoresis parameter. Temperatures are elevated with increasing thermal conductivity parameter (c4) whereas Nusselt numbers are reduced. Nano-particle volume fraction (concentration) is enhanced with increasing nano-particle mass diffusivity parameter (c6) whereas it is markedly reduced with greater Lewis number (Le) and Brownian motion parameter (Nb). With increasing stretching/shrinking velocity power-law exponent (m), skin friction is decreased whereas Nusselt number and Sherwood number are both elevated. Motile microorganism density is boosted strongly with increasing micro-organism diffusivity parameter (c8) and Brownian motion parameter (Nb) but reduced considerably with greater bioconvection Schmidt number (Sc) and bioconvection PĂ©clet number (Pe). The simulations find applications in deposition processes in nano-bio-coating manufacturing processes

    Quantum information processes in protein microtubules of brain neurons

    Get PDF
    We study biologically ‘orchestrated’ coherent quantum processes in collections of protein microtubules of brain neurons, which correlate with, and regulate, neuronal synaptic and membrane activity. In this situation the continuous Schrodinger evolution of each such process terminates in accordance with the specific Diosi-Penrose (DP) scheme of ‘objective reduction’ (‘OR’) of the quantum state. This orchestrated OR activity (‘Orch OR’) is taken to result in moments of conscious awareness and/or choice. We analyze Orch OR in light of advances and developments in quantum physics, computational neuroscience and quantum biology. Much attention is also devoted to the ‘beat frequencies’ of faster microtubule vibrations as a possible source of the observed electroencephalographic (‘EEG’) correlates of consciousness

    Instantons and 2d Superconformal field theory

    Full text link
    A recently proposed correspondence between 4-dimensional N=2 SUSY SU(k) gauge theories on R^4/Z_m and SU(k) Toda-like theories with Z_m parafermionic symmetry is used to construct four-point N=1 super Liouville conformal block, which corresponds to the particular case k=m=2. The construction is based on the conjectural relation between moduli spaces of SU(2) instantons on R^4/Z_2 and algebras like \hat{gl}(2)_2\times NSR. This conjecture is confirmed by checking the coincidence of number of fixed points on such instanton moduli space with given instanton number N and dimension of subspace degree N in the representation of such algebra.Comment: 13 pages, exposition improved, references adde

    Photodisintegration of 4^4He into p+t

    Full text link
    The two-body photodisintegration of 4^4He into a proton and a triton has been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system in the energy range from 0.35 to 1.55 GeV were incident on a liquid 4^4He target. This is the first measurement of the photodisintegration of 4^4He above 0.4 GeV. The differential cross sections for the γ\gamma4^4He→pt\to pt reaction have been measured as a function of photon-beam energy and proton-scattering angle, and are compared with the latest model calculations by J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the calculations that include three-body mechanisms, thus confirming their importance. These results reinforce the conclusion of our previous study of the three-body breakup of 3^3He that demonstrated the great importance of three-body mechanisms in the energy region 0.5-0.8 GeV .Comment: 13 pages submitted in one tgz file containing 2 tex file and 22 postscrip figure

    π0\pi^0 photoproduction on the proton for photon energies from 0.675 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction Îłp→pπ0\gamma p \to p \pi^0 have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.Comment: 18 pages, 48 figure

    Physics of leptoquarks in precision experiments and at particle colliders

    Full text link
    We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low-energy observables such as electric dipole moments, (g-2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on the strength of LQ interactions with the quarks and leptons to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision measurements, top, and Higgs physics. The Higgs physics analysis we present covers not only the most recent but also expected results from the Large Hadron Collider (LHC). We finally discuss direct LQ searches. Current experimental situation is summarized and self-consistency of assumptions that go into existing accelerator-based searches is discussed. A progress in making next-to-leading order predictions for both pair and single LQ productions at colliders is also outlined.Comment: 136 pages, 22 figures, typographical errors fixed, the Physics Reports versio
    • 

    corecore