422 research outputs found
Changing Clays: Raw Material Preferences in the ‘Neolithic’ Ceramic Assemblages of the Upper Vitim Basin
© The Prehistoric Society 2017 This paper provides a contextual summary of a diachronic analysis of ceramic vessels and hunter-gatherer societies from the final Pleistocene to the later Holocene in a remote corner of the Vitim Basin in Eastern Siberia. An integrated programme of ceramic analysis, raw materials survey, and archaeological investigation is drawn into new models of group mobility and social behaviour. The results challenge widespread assumptions about the relationship between ceramics, sedentarisation, and social complexity. Evidence of these transformations, though potentially identifiable in the archaeological record, could not be associated with the adoption of pottery
An exact solution on the ferromagnetic Face-Cubic spin model on a Bethe lattice
The lattice spin model with --component discrete spin variables restricted
to have orientations orthogonal to the faces of -dimensional hypercube is
considered on the Bethe lattice, the recursive graph which contains no cycles.
The partition function of the model with dipole--dipole and
quadrupole--quadrupole interaction for arbitrary planar graph is presented in
terms of double graph expansions. The latter is calculated exactly in case of
trees. The system of two recurrent relations which allows to calculate all
thermodynamic characteristics of the model is obtained. The correspondence
between thermodynamic phases and different types of fixed points of the RR is
established. Using the technique of simple iterations the plots of the zero
field magnetization and quadrupolar moment are obtained. Analyzing the regions
of stability of different types of fixed points of the system of recurrent
relations the phase diagrams of the model are plotted. For the phase
diagram of the model is found to have three tricritical points, whereas for there are one triple and one tricritical points.Comment: 20 pages, 7 figure
Instantons and Yang-Mills Flows on Coset Spaces
We consider the Yang-Mills flow equations on a reductive coset space G/H and
the Yang-Mills equations on the manifold R x G/H. On nonsymmetric coset spaces
G/H one can introduce geometric fluxes identified with the torsion of the spin
connection. The condition of G-equivariance imposed on the gauge fields reduces
the Yang-Mills equations to phi^4-kink equations on R. Depending on the
boundary conditions and torsion, we obtain solutions to the Yang-Mills
equations describing instantons, chains of instanton-anti-instanton pairs or
modifications of gauge bundles. For Lorentzian signature on R x G/H, dyon-type
configurations are constructed as well. We also present explicit solutions to
the Yang-Mills flow equations and compare them with the Yang-Mills solutions on
R x G/H.Comment: 1+12 page
Periodic Bounce for Nucleation Rate at Finite Temperature in Minisuperspace Models
The periodic bounce configurations responsible for quantum tunneling are
obtained explicitly and are extended to the finite energy case for
minisuperspace models of the Universe. As a common feature of the tunneling
models at finite energy considered here we observe that the period of the
bounce increases with energy monotonically. The periodic bounces do not have
bifurcations and make no contribution to the nucleation rate except the one
with zero energy. The sharp first order phase transition from quantum tunneling
to thermal activation is verified with the general criterions.Comment: 17 pages, 5 postscript figures include
New Results for the Correlation Functions of the Ising Model and the Transverse Ising Chain
In this paper we show how an infinite system of coupled Toda-type nonlinear
differential equations derived by one of us can be used efficiently to
calculate the time-dependent pair-correlations in the Ising chain in a
transverse field. The results are seen to match extremely well long large-time
asymptotic expansions newly derived here. For our initial conditions we use new
long asymptotic expansions for the equal-time pair correlation functions of the
transverse Ising chain, extending an old result of T.T. Wu for the 2d Ising
model. Using this one can also study the equal-time wavevector-dependent
correlation function of the quantum chain, a.k.a. the q-dependent diagonal
susceptibility in the 2d Ising model, in great detail with very little
computational effort.Comment: LaTeX 2e, 31 pages, 8 figures (16 eps files). vs2: Two references
added and minor changes of style. vs3: Corrections made and reference adde
Collinear helium under periodic driving: stabilization of the asymmetric stretch orbit
The collinear eZe configuration of helium, with the electrons on opposite
sides of the nucleus, is studied in the presence of an external electromagnetic
(laser or microwave) field. We show that the classically unstable "asymmetric
stretch" orbit, on which doubly excited intrashell states of helium with
maximum interelectronic angle are anchored, can be stabilized by means of a
resonant driving where the frequency of the electromagnetic field equals the
frequency of Kepler-like oscillations along the orbit. A static magnetic field,
oriented parallel to the oscillating electric field of the driving, can be used
to enforce the stability of the configuration with respect to deviations from
collinearity. Quantum Floquet calculations within a collinear model of the
driven two-electron atom reveal the existence of nondispersive wave packets
localized on the stabilized asymmetric stretch orbit, for double excitations
corresponding to principal quantum numbers of the order of N > 10.Comment: 13 pages, 12 figure
DeepWAS: multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning
Genome-wide association studies (GWAS) identify genetic variants associated with traits or diseases. GWAS never directly link variants to regulatory mechanisms. Instead, the functional annotation of variants is typically inferred by post hoc analyses. A specific class of deep learning-based methods allows for the prediction of regulatory effects per variant on several cell type-specific chromatin features. We here describe "DeepWAS", a new approach that integrates these regulatory effect predictions of single variants into a multivariate GWAS setting. Thereby, single variants associated with a trait or disease are directly coupled to their impact on a chromatin feature in a cell type. Up to 61 regulatory SNPs, called dSNPs, were associated with multiple sclerosis (MS, 4,888 cases and 10,395 controls), major depressive disorder (MDD, 1,475 cases and 2,144 controls), and height (5,974 individuals). These variants were mainly non-coding and reached at least nominal significance in classical GWAS. The prediction accuracy was higher for DeepWAS than for classical GWAS models for 91% of the genome-wide significant, MS-specific dSNPs. DSNPs were enriched in public or cohort-matched expression and methylation quantitative trait loci and we demonstrated the potential of DeepWAS to generate testable functional hypotheses based on genotype data alone. DeepWAS is available at https://github.com/cellmapslab/DeepWAS
Exclusive rho^0 muoproduction on transversely polarised protons and deuterons
The transverse target spin azimuthal asymmetry A_UT in hard exclusive
production of rho^0 mesons was measured at COMPASS by scattering 160 GeV/c
muons off transversely polarised protons and deuterons. The measured asymmetry
is sensitive to the nucleon helicity-flip generalised parton distributions E^q,
which are related to the orbital angular momentum of quarks in the nucleon. The
Q^2, x_B and p_t^2 dependence of A_UT is presented in a wide kinematic range.
Results for deuterons are obtained for the first time. The measured asymmetry
is small in the whole kinematic range for both protons and deuterons, which is
consistent with the theoretical interpretation that contributions from GPDs E^u
and E^d approximately cancel.Comment: 20 pages, 9 figures and 4 tables, updated author lis
- …