902 research outputs found

    The Star Formation Rate and Metallicity of the Host Galaxy of the Dark GRB 080325 at z = 1.78

    Get PDF
    We present near-infrared spectroscopy of the host galaxy of the dark gamma-ray burst (GRB) 080325 using Subaru/Multi-Object Infrared Camera and Spectrograph. The obtained spectrum provides a clear detection of H emission and marginal [Nii]λ6584. The host is a massive (M∗ ∼ 1011 Mȯ), dusty (Av ∼ 1.2) star-forming galaxy at z = 1.78. The extinction-corrected star formation rate (SFR) calculated from the H luminosity (35.6-47.0 Mȯ yr-1) is typical among GRB host galaxies (and star-forming galaxies generally) at z > 1; however, the specific SFR is lower than for normal star-forming galaxies at redshift ∼1.6, in contrast to the high specific SFR measured for many of other GRB hosts. The metallicity of the host is estimated to be 12 + log(O/H)KK04 = 8.88. We emphasize that this is one of the most massive host galaxies at z > for which metallicity is measured with emission-line diagnostics. The metallicity is fairly high among GRB hosts, however, this is still lower than the metallicity of normal star-forming galaxies of the same mass at z ∼ 1.6. The metallicity offset from normal star-forming galaxies is close to a typical value of other GRB hosts and indicates that GRB host galaxies are uniformly biased toward low metallicity over a wide range of redshifts and stellar masses. The low-metallicity nature of the GRB 080325 host likely cannot be attributed to the fundamental metallicity relation of star-forming galaxies because it is a metal-poor outlier from the relation and has a low specific star formation rate. Thus, we conclude that metallicity is important to the mechanism that produced this GRB. © 2015. The American Astronomical Society. All rights reserved

    GALEX selected Lyman Break Galaxies at z~2: Comparison with other Populations

    Get PDF
    We present results of a search for bright Lyman break galaxies at 1.5<=z<=2.5 in the GOODS-S field using a NUV-dropout technique in combination with color-selection. We derived a sample of 73 LBG candidates. We compare our selection efficiencies to BM/BX- and BzK methods (techniques solely based on ground-based data sets), and find the NUV data to provide greater efficiency for selecting star-forming galaxies. We estimate LBG candidate ages, masses, star formation rates, and extinction from fitting PEGASE synthesis evolution models. We find about 20% of our LBG candidates are comparable to infrared luminous LBGs or sub-millimeter galaxies which are thought to be precursors of massive elliptical galaxies today. Overall, we can show that although BM/BX and BzK methods do identify star-forming galaxies at z~2, the sample they provide biases against those star-forming galaxies which are more massive and contain sizeable red stellar populations. A true Lyman break criterion at z~2 is therefore more directly comparable to the populations found at z~3, which does contain a red fraction.Comment: 14 pages, 11 figures, accepted for publication in Ap

    Initial Results from the Nobeyama Molecular Gas Observations of Distant Bright Galaxies

    Full text link
    We present initial results from the CO survey toward high redshift galaxies using the Nobeyama 45m telescope. Using the new wide bandwidth spectrometer equipped with a two-beam SIS receiver, we have robust new detections of three high redshift (z=1.6-3.4) submillimeter galaxies (SXDF 1100.001, SDP9, and SDP17), one tentative detection (SDSS J160705+533558), and one non-detection (COSMOS-AzTEC1). The galaxies observed during the commissioning phase are sources with known spectroscopic redshifts from previous optical or from wide-band submm spectroscopy. The derived molecular gas mass and line widths from Gaussian fits are ~10^11 Msun and 430-530 km/s, which are consistent with previous CO observations of distant submm galaxies and quasars. The spectrometer that allows a maximum of 32 GHz instantaneous bandwidth will provide new science capabilities at the Nobeyama 45m telescope, allowing us to determine redshifts of bright submm selected galaxies without any prior redshift information.Comment: 4 pages, 1 figure, PASJ Letter Accepte

    The Impact of cold gas accretion above a mass floor on galaxy scaling relations

    Full text link
    Using the cosmological baryonic accretion rate and normal star formation efficiencies, we present a very simple model for star-forming galaxies (SFGs) that accounts for the mass and redshift dependencies of the SFR-Mass and Tully-Fisher relations from z=2 to the present. The time evolution follows from the fact that each modelled galaxy approaches a steady state where the SFR follows the (net) cold gas accretion rate. The key feature of the model is a halo mass floor M_{min}~10^{11} below which accretion is quenched in order to simultaneously account for the observed slopes of the SFR-Mass and Tully-Fischer relations. The same successes cannot be achieved via a star-formation threshold (or delay) nor by varying the SF efficiency or the feedback efficiency. Combined with the mass ceiling for cold accretion due to virial shock heating, the mass floor M_{min} explains galaxy "downsizing", where more massive galaxies formed earlier and over a shorter period of time. It turns out that the model also accounts for the observed galactic baryon and gas fractions as a function of mass and time, and the cosmic SFR density from z~6 to z=0, which are all resulting from the mass floor M_{min}. The model helps to understand that it is the cosmological decline of accretion rate that drives the decrease of cosmic SFR density between z~2 and z=0 and the rise of the cosmic SFR density allows us to put a constraint on our main parameter M_{min}~10^{11} solar masses. Among the physical mechanisms that could be responsible for the mass floor, we view that photo-ionization feedback (from first in-situ hot stars) lowering the cooling efficiency is likely to play a large role.Comment: 19pages, 14 figures, accepted to ApJ, updated reference

    "Dark" GRB 080325 in a Dusty Massive Galaxy at z ~ 2

    Full text link
    We present optical and near infrared observations of GRB 080325 classified as a "Dark GRB". Near-infrared observations with Subaru/MOIRCS provided a clear detection of afterglow in Ks band, although no optical counterpart was reported. The flux ratio of rest-wavelength optical to X-ray bands of the afterglow indicates that the dust extinction along the line of sight to the afterglow is Av = 2.7 - 10 mag. This large extinction is probably the major reason for optical faintness of GRB 080325. The J - Ks color of the host galaxy, (J - Ks = 1.3 in AB magnitude), is significantly redder than those for typical GRB hosts previously identified. In addition to J and Ks bands, optical images in B, Rc, i', and z' bands with Subaru/Suprime-Cam were obtained at about one year after the burst, and a photometric redshift of the host is estimated to be z_{photo} = 1.9. The host luminosity is comparable to L^{*} at z \sim 2 in contrast to the sub-L^{*} property of typical GRB hosts at lower redshifts. The best-fit stellar population synthesis model for the host shows that a large dust extinction (Av = 0.8 mag) attributes to the red nature of the host and that the host galaxy is massive (M_{*} = 7.0 \times 10^{10} Msun) which is one of the most massive GRB hosts previously identified. By assuming that the mass-metallicity relation for star-forming galaxies at z \sim 2 is applicable for the GRB host, this large stellar mass suggests the high metallicity environment around GRB 080325, consistent with inferred large extinction.Comment: 22 pages, 10 figures, accepted for publication in The Astrophysical Journa
    corecore