27 research outputs found

    Hyper-runaway and hypervelocity white dwarf candidates in Gaia Data Release 3: possible remnants from Ia/Iax supernova explosions or dynamical encounters

    Get PDF
    Type Ia and other peculiar supernovae (SNe) are thought to originate from the thermonuclear explosions of white dwarfs (WDs). Some of the proposed channels involve the ejection of a partly exploded WD (e.g. Iax SN remnant) or the companion of an exploding WD at extremely high velocities (>400 km s−1). Characterisation of such hyper-runaway/hypervelocity (HVS) WDs might therefore shed light on the physics and origins of SNe. Here we analyse the Gaia DR3 data to search for HVS WDs candidates, and peculiar sub-main-sequence (sub-MS) objects. We retrieve the previously identified HVSs, and find 46 new HVS candidates. Among these we identify two new unbound WDs and two new unbound sub-MS candidates. The remaining stars are hyper-runaway WDs and hyper-runaway sub-MS stars. The numbers and properties of the HVS WD and sub-MS candidates suggest that extreme velocity ejections (>1000 km s−1) can accompany at most a small fraction of type Ia SNe, disfavouring a significant contribution of the D6-scenario to the origin of Ia SNe. The rate of HVS ejections following the hybrid WD reverse-detonation channel could be consistent with the identified HVSs. The numbers of lower-velocity HVS WDs could be consistent with type Iax SNe origin and/or contribution from dynamical encounters. We also searched for HVS WDs related to known SN remnants, but identified only one such candidate

    Once in a blue moon: detection of ‘bluing’ during debris transits in the white dwarf WD 1145+017

    Get PDF
    The first transiting planetesimal orbiting a white dwarf was recently detected in K2 data of WD 1145+017 and has been followed up intensively. The multiple, long and variable transits suggest the transiting objects are dust clouds, probably produced by a disintegrating asteroid. In addition, the system contains circumstellar gas, evident by broad absorption lines, mostly in the u΄ band, and a dust disc, indicated by an infrared excess. Here we present the first detection of a change in colour of WD 1145+017 during transits, using simultaneous multiband fast-photometry ULTRACAM measurements over the u΄g΄r΄i΄ bands. The observations reveal what appears to be ‘bluing' during transits; transits are deeper in the redder bands, with a u΄ − r΄ colour difference of up to ∼−0.05 mag. We explore various possible explanations for the bluing, including limb darkening or peculiar dust properties. ‘Spectral' photometry obtained by integrating over bandpasses in the spectroscopic data in and out of transit, compared to the photometric data, shows that the observed colour difference is most likely the result of reduced circumstellar absorption in the spectrum during transits. This indicates that the transiting objects and the gas share the same line of sight and that the gas covers the white dwarf only partially, as would be expected if the gas, the transiting debris and the dust emitting the infrared excess are part of the same general disc structure (although possibly at different radii). In addition, we present the results of a week-long monitoring campaign of the system using a global network of telescopes

    MOA-2016-BLG-227Lb: A Massive Planet Characterized by Combining Light-curve Analysis and Keck AO Imaging

    Get PDF
    We report the discovery of a microlensing planet—MOA-2016-BLG-227Lb—with a large planet/host mass ratio of q ≃ 9 × 10−3. This event was located near the K2 Campaign 9 field that was observed by a large number of telescopes. As a result, the event was in the microlensing survey area of a number of these telescopes, and this enabled good coverage of the planetary light-curve signal. High angular resolution adaptive optics images from the Keck telescope reveal excess flux at the position of the source above the flux of the source star, as indicated by the light-curve model. This excess flux could be due to the lens star, but it could also be due to a companion to the source or lens star, or even an unrelated star. We consider all these possibilities in a Bayesian analysis in the context of a standard Galactic model. Our analysis indicates that it is unlikely that a large fraction of the excess flux comes from the lens, unless solar-type stars are much more likely to host planets of this mass ratio than lower mass stars. We recommend that a method similar to the one developed in this paper be used for other events with high angular resolution follow-up observations when the follow-up observations are insufficient to measure the lens–source relative proper motion

    A dearth of small particles in the transiting material around the white dwarfWD 1145+017

    Get PDF
    White dwarf WD 1145+017 is orbited by several clouds of dust, possibly emanating from actively disintegrating bodies. These dust clouds reveal themselves through deep, broad, and evolving transits in the star's light curve. Here, we report two epochs of multi-wavelength photometric observations of WD 1145+017, including several filters in the optical, Ks_\mathrm{s} and 4.5 μ\mum bands in 2016 and 2017. The observed transit depths are different at these wavelengths. However, after correcting for excess dust emission at Ks_\mathrm{s} and 4.5 μ\mum, we find the transit depths for the white dwarf itself are the same at all wavelengths, at least to within the observational uncertainties of \sim5%-10%. From this surprising result, and under the assumption of low optical depth dust clouds, we conclude that there is a deficit of small particles (with radii ss \lesssim 1.5 μ\mum) in the transiting material. We propose a model wherein only large particles can survive the high equilibrium temperature environment corresponding to 4.5 hr orbital periods around WD 1145+017, while small particles sublimate rapidly. In addition, we evaluate dust models that are permitted by our measurements of infrared emission

    SDSS J1152+0248: an eclipsing double white dwarf from the Kepler K2 campaign.

    Get PDF
    We report the discovery of the sixth known eclipsing double white dwarf (WD) system, SDSS J1152+0248, with a 2.3968 +/- 0.0003 h orbital period, in data from the Kepler Mission's K2 continuation. Analysing and modelling the K2 data together with ground-based fast photometry, spectroscopy, and radial-velocity measurements, we determine that the primary is a DA-type WD with mass M1 = 0.47 +/- 0.11 Msun, radius R1 = 0.0197 +/- 0.0035 Rsun, and cooling age t1 = 52 +/- 36 Myr. No lines are detected, to within our sensitivity, from the secondary WD, but it is likely also of type DA. Its central surface brightness, as measured from the secondary eclipse, is 0.31 of the primary's surface brightness. Its mass, radius, and cooling age, respectively, are M2 = 0.44 +/- 0.09 Msun, R2 = 0.0223 +0.0064 -0.0050 Rsun, and t2 = 230 +/- 100 Myr. SDSS J1152+0248 is a near twin of the double-lined eclipsing WD system CSS 41177.AstronomyMathematic

    Four (Super)luminous Supernovae from the First Months of the ZTF Survey

    Get PDF
    We present photometry and spectroscopy of four hydrogen-poor luminous supernovae discovered during the 2-month long science commissioning and early operations of the Zwicky Transient Facility (ZTF) survey. Three of these objects, SN 2018bym (ZTF18aapgrxo), SN 2018avk (ZTF18aaisyyp), and SN 2018bgv (ZTF18aavrmcg), resemble typical SLSN-I spectroscopically, while SN 2018don (ZTF18aajqcue) may be an object similar to SN 2007bi experiencing considerable host galaxy reddening, or an intrinsically long-lived, luminous, and red SN Ic. We analyze the light curves, spectra, and host galaxy properties of these four objects and put them in context of the population of SLSN-I. SN 2018bgv stands out as the fastest-rising SLSN-I observed to date, with a rest-frame g-band rise time of just 10 days from explosion to peak—if it is powered by magnetar spin-down, the implied ejecta mass is only sime1 M⊙. SN 2018don also displays unusual properties—in addition to its red colors and comparatively massive host galaxy, the light curve undergoes some of the strongest light-curve undulations postpeak seen in an SLSN-I, which we speculate may be due to interaction with circumstellar material. We discuss the promises and challenges of finding SLSNe in large-scale surveys like ZTF given the observed diversity in the population

    The First Post-Kepler Brightness Dips of KIC 8462852

    Get PDF
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process

    The First Post-Kepler Brightness Dips of KIC 8462852

    Full text link
    corecore