1,252 research outputs found

    The Initial Mass Function of the Orion Nebula Cluster across the H-burning limit

    Get PDF
    We present a new census of the Orion Nebula Cluster (ONC) over a large field of view (>30'x30'), significantly increasing the known population of stellar and substellar cluster members with precisely determined properties. We develop and exploit a technique to determine stellar effective temperatures from optical colors, nearly doubling the previously available number of objects with effective temperature determinations in this benchmark cluster. Our technique utilizes colors from deep photometry in the I-band and in two medium-band filters at lambda~753 and 770nm, which accurately measure the depth of a molecular feature present in the spectra of cool stars. From these colors we can derive effective temperatures with a precision corresponding to better than one-half spectral subtype, and importantly this precision is independent of the extinction to the individual stars. Also, because this technique utilizes only photometry redward of 750nm, the results are only mildly sensitive to optical veiling produced by accretion. Completing our census with previously available data, we place some 1750 sources in the Hertzsprung-Russel diagram and assign masses and ages down to 0.02 solar masses. At faint luminosities, we detect a large population of background sources which is easily separated in our photometry from the bona fide cluster members. The resulting initial mass function of the cluster has good completeness well into the substellar mass range, and we find that it declines steeply with decreasing mass. This suggests a deficiency of newly formed brown dwarfs in the cluster compared to the Galactic disk population.Comment: 16 pages, 18 figures. Accepted for publication in The Astrophysical Journa

    A multi-color optical survey of the orion nebula cluster. II. The H-R diagram

    Get PDF
    We present a new analysis of the stellar population of the Orion Nebula Cluster (ONC) based on multi-band optical photometry and spectroscopy.We study the color–color diagrams in BVI, plus a narrowband filter centered at 6200 Å, finding evidence that intrinsic color scales valid for main-sequence dwarfs are incompatible with the ONC in the M spectral-type range, while a better agreement is found employing intrinsic colors derived from synthetic photometry, constraining the surface gravity value as predicted by a pre-main-sequence isochrone.We refine these model colors even further, empirically, by comparison with a selected sample of ONC stars with no accretion and no extinction. We consider the stars with known spectral types from the literature, and extend this sample with the addition of 65 newly classified stars from slit spectroscopy and 182 M-type from narrowband photometry; in this way, we isolate a sample of about 1000 stars with known spectral type. We introduce a new method to self-consistently derive the stellar reddening and the optical excess due to accretion from the location of each star in the BVI color–color diagram. This enables us to accurately determine the extinction of the ONC members, together with an estimate of their accretion luminosities. We adopt a lower distance for the Orion Nebula than previously assumed, based on recent parallax measurements. With a careful choice of also the spectral-type–temperature transformation, we produce the new Hertzsprung–Russell diagram of the ONC population, more populated than previous works. With respect to previous works, we find higher luminosity for late-type stars and a slightly lower luminosity for early types. We determine the age distribution of the population, peaking from ~2 to ~3 Myr depending on the model. We study the distribution of the members in the mass–age plane and find that taking into account selection effects due to incompleteness, removes an apparent correlation between mass and age.We derive the initial mass function for low- and intermediate mass members of the ONC, which turns out to be model dependent and shows a turnover at M ≲ 0.2 M_⊙

    HST measures of Mass Accretion Rates in the Orion Nebula Cluster

    Get PDF
    The present observational understanding of the evolution of the mass accretion rates (Macc) in pre-main sequence stars is limited by the lack of accurate measurements of Macc over homogeneous and large statistical samples of young stars. Such observational effort is needed to properly constrain the theory of star formation and disk evolution. Based on HST/WFPC2 observations, we present a study of Macc for a sample of \sim 700 sources in the Orion Nebula Cluster, ranging from the Hydrogen-burning limit to M\ast \sim 2M\odot. We derive Macc from both the U-band excess and the H{\alpha} luminosity (LH{\alpha}), after determining empirically both the shape of the typical accretion spectrum across the Balmer jump and the relation between the accretion luminosity (Lacc) and LH{\alpha}, that is Lacc/L\odot = (1.31\pm0.03)\cdotLH{\alpha}/L\odot + (2.63\pm 0.13). Given our large statistical sample, we are able to accurately investigate relations between Macc and the parameters of the central star such as mass and age. We clearly find Macc to increase with stellar mass, and decrease over evolutionary time, but we also find strong evidence that the decay of Macc with stellar age occurs over longer timescales for more massive PMS stars. Our best fit relation between these parameters is given by: log(Macc/M\odot\cdotyr)=(-5.12 \pm 0.86) -(0.46 \pm 0.13) \cdot log(t/yr) -(5.75 \pm 1.47)\cdot log(M\ast/M\odot) + (1.17 \pm 0.23)\cdot log(t/yr) \cdot log(M\ast/M\odot). These results also suggest that the similarity solution model could be revised for sources with M\ast > 0.5M\odot. Finally, we do not find a clear trend indicating environmental effects on the accretion properties of the sources.Comment: 17 pages, 15 figures, accepted for publication in Ap

    Quantitative Evidence for an Intrinsic Age Spread in the Orion Nebula Cluster

    Full text link
    Aims. We present a study of the distribution of stellar ages in the Orion Nebula Cluster (ONC) based on accurate HST photometry taken from the HST Treasury Program observations of the ONC utilizing the most recent estimate of the cluster's distance (Menten et al. 2007). We investigate the presence of an intrinsic age spread in the region and a possible trend of age with the spatial distribution. Methods. We estimate the extinction and accretion luminosity towards each source by performing synthetic photometry on an empirical calibration of atmospheric models (Da Rio et al. 2010) using the package Chorizos (Maiz-Apellaniz 2004). The position of the sources in the HR-diagram is compared with different theoretical isochrones to estimate the mean cluster age and age dispersion. Through Monte Carlo simulations we quantify the amount of intrinsic age spread in the region, taking into account uncertainties on the distance, spectral type, extinction, unresolved binaries, accretion and photometric variability. Results. According to Siess et al. (2000) evolutionary models the mean age of the Cluster is 2.2 Myr with a scatter of few Myrs. With Monte Carlo simulations we find that the observed age spread is inconsistent with a coeval stellar population, but is in agreement with a star formation activity between 1.5 and 3.5 Myrs. We also observe light evidence for a trend of ages with spatial distribution.Comment: 12 pages, 12 figures, Accepted for publication in Astronomy and Astrophysic

    An HST Imaging Survey of Low-Mass Stars in the Chamaeleon I Star Forming region

    Get PDF
    We present new HST/WFPC2 observations of 20 fields centered around T Tauri stars in the Chamaeleon I star forming region. Images have been obtained in the F631N ([OI]6300A), F656N (Ha) and F673N ([SII]6716A+6731A) narrow-band filters, plus the Johnson V-band equivalent F547M filter. We detect 31 T Tauri stars falling within our fields. We discuss the optical morphology of 10 sources showing evidence of either binarity, circumstellar material, or mass loss. We supplement our photometry with a compilation of optical, infrared and sub-millimeter data from the literature, together with new sub-mm data for three objects, to build the Spectral Energy Distributions (SED) of 19 single sources. Using an SED model fitting tool, we self-consistently estimate a number of stellar and disk parameters, while mass accretion rates are directly derived from our Ha photometry. We find that bolometric luminosities derived from dereddened optical data tend to be underestimated in systems with high alpha(2-24} IR spectral index, suggesting that disks seen nearly edge-on may occasionally be interpreted as low luminosity (and therefore more evolved) sources. On the other hand, the same alpha(2-24) spectral index, a tracer of the amount of dust in the warmer layers of the circumstellar disks, and the mass accretion rate appear to decay with the isocronal stellar age, suggesting that the observed age spread (~0.5-5 Myr) within the cluster is real. Our sample contains a few outliers that may have dissipated their circumstellar disks on shorter time-scale.Comment: to appear on Astronomical Journal, accepted April 16, 2012 (AJ-10740

    The Massive Stellar Population in the Young Association LH 95 in the LMC

    Full text link
    We present a spectroscopic study of the most massive stars in the young (4 Myr old) stellar cluster LH 95 in the Large Magellanic Cloud. This analysis allows us to complete the census of the stellar population of the system, previously investigated by us down to 0.4 solar masses with deep HST Advanced Camera for Surveys photometry. We perform spectral classification of the five stars in our sample, based on high resolution optical spectroscopy obtained with 2.2m MPG/ESO FEROS. We use complementary ground-based photometry, previously performed by us, to place these stars in the Hertzsprung-Russel diagram. We derive their masses and ages by interpolation from evolutionary models. The average ages and age spread of the most massive stars are found to be in general comparable with those previously derived for the cluster from its low mass PMS stars. We use the masses of the 5 sample stars to extend to the high-mass end the stellar initial mass function of LH 95 previously established by us. We find that the initial mass function follows a Salpeter relation down to the intermediate-mass regime at 2 Msun. The second most massive star in LH 95 shows broad Balmer line emission and infrared excess, which are compatible with a classical Be star. The existence of such a star in the system adds a constrain to the age of the cluster, which is well covered by our age and age spread determinations. The most massive star, a 60-70 Msun O2 giant is found to be younger (<1 Myr) than the rest of the population. Its mass in relation to the total mass of the system does not follow the empirical relation of the maximum stellar mass versus the hosting cluster mass, making LH 95 an exception to the average trend.Comment: 15 pages, 9 figures, MNRAS accepte

    Are There Age Spreads in Star Forming Regions?

    Full text link
    A luminosity spread at a given effective temperature is ubiquitously seen in the Hertzsprung-Russell (HR) diagrams of young star forming regions and often interpreted in terms of a prolonged period (>=10 Myr) of star formation. I review the evidence that the observed luminosity spreads are genuine and not caused by astrophysical sources of scatter. I then address whether the luminosity spreads necessarily imply large age spreads, by comparing HR diagram ages with ages from independent clocks such as stellar rotation rate, the presence of circumstellar material and lithium depletion. I argue that whilst there probably is a true luminosity dispersion, there is little evidence to support age spreads larger than a few Myr. This paradox could be resolved by brief periods of rapid accretion during the class I pre main-sequence phase.Comment: To appear in the proceedings of JENAM10: Star Clusters in the Era of Large Surveys, 8 page

    A Wide-Field Survey of the Orion Nebula Cluster in the Near-Infrared

    Full text link
    We present J, H and K photometry of the Orion Nebula Cluster obtained at the CTIO/Blanco 4 m telescope in Cerro Tololo with the ISPI imager. From the observations we have assembled a catalog of about 7800 sources distributed over an area of approximately 30'x40', the largest of any survey deeper than 2MASS in this region. The catalog provides absolute coordinates accurate to about 0.15 arcseconds and 3sigma photometry in the 2MASS system down to J 19.5mag, H 18.0mag, K 18.5mag, enough to detect planetary size objects 1 Myr old under Av 10mag of extinction at the distance of the Orion Nebula. We present a preliminary analysis of the catalog, done comparing the (J-H, H-K) color-color diagram, the (H, J-H) and (K, H-K) color-magnitude diagrams and the JHK luminosity functions of three regions at increasing projected distance from the Trapezium. Sources in the inner region typically show IR colors compatible with reddened T Tauri stars, whereas the outer fields are dominated by field stars seen through an amount of extinction which decreases with the distance from the center. The color-magnitude diagrams make it possible to clearly distinguish between the main ONC population, spread across the full field, and background sources. The luminosity functions of the inner region, corrected for completeness, remain relatively flat in the sub-stellar regime regardless of the strategy adopted to remove background contamination.Comment: Astronomical Journal, Accepted Oct. 1, 200

    A Tale of Three Cities : OmegaCAM discovers multiple sequences in the color-magnitude diagram of the Orion Nebula Cluster

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics, © 2017 ESO. Published by EDP Sciences.As part of the Accretion Discs in Hα\alpha with OmegaCAM (ADHOC) survey, we imaged in r, i and H-alpha a region of 12x8 square degrees around the Orion Nebula Cluster. Thanks to the high-quality photometry obtained, we discovered three well-separated pre-main sequences in the color-magnitude diagram. The populations are all concentrated towards the cluster's center. Although several explanations can be invoked to explain these sequences we are left with two competitive, but intriguing, scenarios: a population of unresolved binaries with an exotic mass ratio distribution or three populations with different ages. Independent high-resolution spectroscopy supports the presence of discrete episodes of star formation, each separated by about a million years. The stars from the two putative youngest populations rotate faster than the older ones, in agreement with the evolution of stellar rotation observed in pre-main sequence stars younger than 4 Myr in several star forming regions. Whatever the final explanation, our results prompt for a revised look at the formation mode and early evolution of stars in clusters.Peer reviewedFinal Published versio

    No wide spread of stellar ages in the Orion Nebula Cluster

    Get PDF
    The wide luminosity dispersion seen for stars at a given effective temperature in the H-R diagrams of young clusters and star forming regions is often interpreted as due to significant (~10 Myr) spreads in stellar contraction age. In the scenario where most stars are born with circumstellar discs, and that disc signatures decay monotonically (on average) over timescales of only a few Myr, then any such age spread should lead to clear differences in the age distributions of stars with and without discs. We have investigated large samples of stars in the Orion Nebula Cluster (ONC) using three methods to diagnose disc presence from infrared measurements. We find no significant difference in the mean ages or age distributions of stars with and without discs, consistent with expectations for a coeval population. Using a simple quantitative model we show that any real age spread must be smaller than the median disc lifetime. For a log-normal age distribution, there is an upper limit of <0.14 dex (at 99% confidence) to any real age dispersion, compared to the ~=0.4 dex implied by the H-R diagram. If the mean age of the ONC is 2.5 Myr, this would mean at least 95% of its low-mass stellar population has ages between 1.3--4.8 Myr. We suggest that the observed luminosity dispersion is caused by a combination of observational uncertainties and physical mechanisms that disorder the conventional relationship between luminosity and age for pre main-sequence stars. This means that individual stellar ages from the H-R diagram are unreliable and cannot be used to directly infer a star formation history. Irrespective of what causes the wide luminosity dispersion, the finding that any real age dispersion is less than the median disc lifetime argues strongly against star formation scenarios for the ONC lasting longer than a few Myr.Comment: To appear in MNRAS, 13 page
    • …
    corecore