135 research outputs found
Compressive loading of the murine tibia reveals site-specific micro-scale differences in adaptation and maturation rates of bone
Loading increases bone mass and strength in a site-specific manner; however, possible effects of loading on bone matrix composition have not been evaluated. Site-specific structural and material properties of mouse bone were analyzed on the macro- and micro/molecular scale in the presence and absence of axial loading. The response of bone to load is heterogeneous, adapting at molecular, micro-, and macro-levels. INTRODUCTION: Osteoporosis is a degenerative disease resulting in reduced bone mineral density, structure, and strength. The overall aim was to explore the hypothesis that changes in loading environment result in site-specific adaptations at molecular/micro- and macro-scale in mouse bone. METHODS: Right tibiae of adult mice were subjected to well-defined cyclic axial loading for 2 weeks; left tibiae were used as physiologically loaded controls. The bones were analyzed with μCT (structure), reference point indentation (material properties), Raman spectroscopy (chemical), and small-angle X-ray scattering (mineral crystallization and structure). RESULTS: The cranial and caudal sites of tibiae are structurally and biochemically different within control bones. In response to loading, cranial and caudal sites increase in cortical thickness with reduced mineralization (-14 and -3%, p < 0.01, respectively) and crystallinity (-1.4 and -0.3%, p < 0.05, respectively). Along the length of the loaded bones, collagen content becomes more heterogeneous on the caudal site and the mineral/collagen increases distally at both sites. CONCLUSION: Bone structure and composition are heterogeneous, finely tuned, adaptive, and site-specifically responsive at the micro-scale to maintain optimal function. Manipulation of this heterogeneity may affect bone strength, relative to specific applied loads
Automatic Detection of User Abilities through the SmartAbility Framework
This paper presents a proposed smartphone application for the unique SmartAbility Framework that
supports interaction with technology for people with reduced physical ability, through focusing on
the actions that they can perform independently. The Framework is a culmination of knowledge
obtained through previously conducted technology feasibility trials and controlled usability
evaluations involving the user community. The Framework is an example of ability-based design that
focuses on the abilities of users instead of their disabilities. The paper includes a summary of
Versions 1 and 2 of the Framework, including the results of a two-phased validation approach,
conducted at the UK Mobility Roadshow and via a focus group of domain experts. A holistic model
developed by adapting the House of Quality (HoQ) matrix of the Quality Function Deployment (QFD)
approach is also described. A systematic literature review of sensor technologies built into smart
devices establishes the capabilities of sensors in the Android and iOS operating systems. The review
defines a set of inclusion and exclusion criteria, as well as search terms used to elicit literature from
online repositories. The key contribution is the mapping of ability-based sensor technologies onto
the Framework, to enable the future implementation of a smartphone application. Through the
exploitation of the SmartAbility application, the Framework will increase technology amongst people
with reduced physical ability and provide a promotional tool for assistive technology manufacturers
Formulation and evaluation of herbal face cream with green tea extract
Face cream is a semi-solid preparation for improving skin colour. The purposes of the present research work was to formulate and evaluate herbal face cream with green tea extract, turmeric, aloe vera gel as a skin toner. Herbal creams offer several advantages over synthetic creams. The majority of existing creams which has prepared from drugs of synthetic origin and gives extras fairness to face, but it has several side effects such as itching or several allergic reactions. Herbal creams do not have any of these side effects, without side effects it gives the nourishment to skin. Method carried out to prepare herbal cream was vanishing cream formulation. Firstly, oil phase was prepared, Secondly aqueous phase was prepared. Then aqueous phase was added into the oil phase at 700 c with continuous stirring. Now, once the transfer was completed it was allowed to come at room temperature all the while being stirred. Perfume was added at last just before the finished product was transferred to suitable container. The above prepared herbal cream was evaluated with parameters such as pH, homogeneity by visual and by touch, appearance (colour), rub out (spread ability, wetness), washability, consistency and emolliency. The study suggests that the composition of extract and the base of the cream F1 are more stable and safe
Gene transfer in Indian major carps by electroporation
The rainbow trout growth hormone gene has been successfully tranferred into three species of Indian major carps rohu (Labeo rohita), mrigal (Cirrhinus mrigala) and catla (Catla catla) through electroporated sperm cell. At 0.5kV/cm (25μF capacitance, a resistance, and 2 pulses) the gene transfer efficiency was 25% for rohu, 23% for mrigal and 13% for catla. This is the first report on gene transfer in Indian major carps
Climate change and rice production in Sri Lanka: short-run vs. long-run symmetric and asymmetric effects
This study explores climate change's symmetric and asymmetric impacts on rice production in Sri Lanka, a crucial sector for food security in the country. The analysis utilized Autoregressive Distributed Lag (ARDL) and Non-linear Autoregressive Distributed Lag (NARDL) models. This study analyses annual data from 1952 to 2022 to capture relationships among the study variables. The ARDL findings reveal that temperature and cultivated land area have a significant long-term effect on rice production. The NARDL model reveals that positive and negative changes in climate variables have asymmetrical long-term impacts. Positive changes in temperature and rainfall lead to a notable decline in rice yields in the long term. Negative rainfall changes create a significant beneficial effect on rice production in the long term. Cultivated land area shows a significant positive impact on rice yield in the long term. The results of symmetric and asymmetric climate change impact are essential for formulating agricultural climate adaptation policies, such as promoting climate resilience rice varieties, improving irrigation and water management, developing early warning systems that promote sustainability and enhance climate adaptation strategies, ensuring food security in Sri Lanka
Biocontrol of larval mosquitoes by Acilius sulcatus (Coleoptera: Dytiscidae)
<p>Abstract</p> <p>Background</p> <p>Problems associated with resistant mosquitoes and the effects on non-target species by chemicals, evoke a reason to find alternative methods to control mosquitoes, like the use of natural predators. In this regard, aquatic coleopterans have been explored less compared to other insect predators. In the present study, an evaluation of the role of the larvae of <it>Acilius sulcatus </it>Linnaeus 1758 (Coleoptera: Dytiscidae) as predator of mosquito immatures was made in the laboratory. Its efficacy under field condition was also determined to emphasize its potential as bio-control agent of mosquitoes.</p> <p>Methods</p> <p>In the laboratory, the predation potential of the larvae of <it>A. sulcatus </it>was assessed using the larvae of <it>Culex quinquefasciatus </it>Say 1823 (Diptera: Culicidae) as prey at varying predator and prey densities and available space. Under field conditions, the effectiveness of the larvae of <it>A. sulcatus </it>was evaluated through augmentative release in ten cemented tanks hosting immatures of different mosquito species at varying density. The dip density changes in the mosquito immatures were used as indicator for the effectiveness of <it>A. sulcatus </it>larvae.</p> <p>Results</p> <p>A single larva of <it>A. sulcatus </it>consumed on an average 34 IV instar larvae of <it>Cx. quinquefasciatus </it>in a 24 h period. It was observed that feeding rate of <it>A. sulcatus </it>did not differ between the light-on (6 a.m. – 6 p.m.), and dark (6 p.m. – 6 a.m.) phases, but decreased with the volume of water i.e., space availability. The prey consumption of the larvae of <it>A. sulcatus </it>differed significantly (P < 0.05) with different prey, predator and volume combinations, revealed through univariate ANOVA. The field study revealed a significant decrease (p < 0.05) in larval density of different species of mosquitoes after 30 days from the introduction of <it>A. sulcatus </it>larvae, while with the withdrawal, a significant increase (p < 0.05) in larval density was noted indicating the efficacy of <it>A. sulcatus </it>in regulating mosquito immatures. In the control tanks, mean larval density did not differ (p > 0.05) throughout the study period.</p> <p>Conclusion</p> <p>the larvae of the dytiscid beetle <it>A. sulcatus </it>proved to be an efficient predator of mosquito immatures and may be useful in biocontrol of medically important mosquitoes.</p
Gene expression throughout a vertebrate's embryogenesis
Abstract Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development
The Atlantic Bonito ( Sarda sarda,Bloch 1793) Transcriptome and Detection of Differential Expression during Larvae Development
Versión del editor
Stability and Release Kinetics of an Advanced Gliclazide-Cholic Acid Formulation: The Use of Artificial-Cell Microencapsulation in Slow Release Targeted Oral Delivery of Antidiabetics
Introduction: In previous studies carried out in our laboratory, a bile acid (BA) formulation exerted a hypoglycaemic effect in a rat model of type-1 diabetes (T1D). When the antidiabetic drug gliclazide (G) was added to the bile acid, it augmented the hypoglycaemic effect. In a recent study, we designed a new formulation of gliclazide-cholic acid (G-CA), with good structural properties, excipient compatibility and exhibits pseudoplastic-thixotropic characteristics. The aim of this study is to test the slow release and pH-controlled properties of this new formulation. The aim is also to examine the effect of CA on G release kinetics at various pH values and different temperatures. Method: Microencapsulation was carried out using our Buchi-based microencapsulating system developed in our laboratory. Using sodium alginate (SA) polymer, both formulations were prepared: G-SA (control) and G-CA-SA (test) at a constant ratio (1:3:30), respectively. Microcapsules were examined for efficiency, size, release kinetics, stability and swelling studies at pH 1.5, pH 3, pH 7.4 and pH 7.8 and temperatures of 20 and 30 °C. Results: The new formulation is further optimised by the addition of CA. CA reduced microcapsule swelling of the microcapsules at pH 7.8 and pH 3 at 30 °C and pH 3 at 20 °C, and, even though microcapsule size remains similar after CA addition, percent G release was enhanced at high pH values (pH 7.4 and pH 7.8, p < 0.01). Conclusion: The new formulation exhibits colon-targeted delivery and the addition of CA prolonged G release suggesting its suitability for the sustained and targeted delivery of G and CA to the lower intestine
- …
