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Abstract

The Atlantic bonito (Sarda sarda, Bloch 1793) belongs to the important marine fish species with a wide geographical
distribution covering the Atlantic Ocean, the Mediterranean and its bordering seas. Aquaculture practices for this species
are still in their infancies and scientific studies are seldom undertaken, mainly because of difficulties in sampling. Thus for
small tuna species like the Atlantic bonito only little is known about its biology and regarding the molecular background
even less information is available. In the production of marine fish it is known that the most critical period is the larval
stages, as high growth rates as well as significant developmental changes take place. In this study we have investigated the
transcriptome of the Atlantic bonito of five larvae stages applying Illumina sequencing technology. For non-model species
like aquaculture species, transcriptome analysis of RNA samples from individuals using Illumina sequencing technology is
technically efficient and cost effective. In the present study a total number of 169,326,711 paired-end reads with a read
length of 100 base pairs were generated resulting in a reference transcriptome of 68,220 contigs with an average length of
2054 base pairs. For differential expression analyses single end reads were obtained from different developmental stages
and mapped to the constructed reference transcriptome. Differential expression analyses revealed in total 18,657
differentially expressed transcripts and were assigned to five distinguished groups. Each of the five clusters shows stage
specific gene expression. We present for the first time in the Atlantic bonito an extensive RNA-Seq based characterization of
its transcriptome as well as significant information on differential expression among five developmental larvae stages. The
generated transcripts, including SNP and microsatellite information for candidate molecular markers and gene expression
information will be a valuable resource for future genetic and molecular studies.
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Introduction

The Atlantic bonito (Sarda sarda, Bloch 1793), belonging to the

family of the Scombridae is a mackerel-like epipelagic teleost fish

species. Among the four allopatric species, Sarda australis, Sarda

chiliensis, Sarda orientalis and S. sarda, only S. sarda inhabits the

Atlantic and Mediterranean waters. Overall the Atlantic bonito

has a wide geographical distribution covering the Atlantic Ocean,

the Mediterranean and its bordering seas [1,2]. It is an important

marine fish species throughout its extent of distribution and is

primarily exploited by coastal fisheries. In 2010 the total catch of

Atlantic bonito was around 15,000 tons. The first successful

aquaculture station was reported in 2011 within the European

SELFDOTT project. For the production of marine fish, larval

stages constitute a significant phase [3] as high growth rates as well

as important developmental changes occur. Biotic as well as

abiotic conditions influences greatly early stages of marine fish

concerning survival, the start of feeding as well as larval growth.

Phenotypic characters used for identification comprises the yolk

shape, position of oil globule (if present), number of myomers,

position of anus, fin fold and melanophores [4]. Concerning

development of bonito species only a description of the larval

growth in the Pacific bonito S. chiliensis (Cuvier) has been published

[5]. The authors describe six basic stages of post-embryonic

development based on ontogenetic changes in morphology and

behavior. In addition two discrete metamorphic events during

development are described with the first one being during the pre-

juvenile stage and the second when the animals enter the juvenile

stage [6]. To attain high quality juveniles and thus to assure the

accessibility of healthy and well-developed juveniles the larval

period is decisive. At molecular level some studies have been

carried out in other fish species in order to assess differential gene

expression of the egg and the early embryo [3,7–13]. Post-
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embryonic larvae transcriptome assessment was addressed e.g. in

the gilthead sea bream (Sparus aurata) by GS454 FLX sequencing

[13] in order to get insight into its larval development. Among

gene expression studies in early development of fish, a set of

transcripts were identified showing specific gene expression

patterns [14–16] drawing attention to the function of early

expressed genes. Nonetheless for small tuna species like the

Atlantic bonito only little is known about the biology and

regarding the molecular background even less information is

available. The fast evolving sequencing technologies facilitated the

investigation in a large variety of different sequencing projects in

model but also in non-model organism. Today a vast amount of

sequence data are available for many species including non-model

fish species of commercial interest like the catfish (Ictalurus punctatus)

[17,18], the gilthead sea bream S. aurata [13,19] and the European

sea bass (Dicentrarchus labrax) [20,21]. However to the best of our

knowledge, for economic epipelagic fish species like the Atlantic

tuna or the Atlantic bonito only little genome and transcriptome

information is published [1,2,22]. For the Atlantic bluefin tuna

(Thunnus thynnus) in total 11, 453 sequences are published

comprising 10,175 expressed sequence tags (ESTs) and 1278

Nucleotide (NCBI, July 2012). Regarding the Atlantic bonito even

less molecular information is available. Only 469 sequences are

published at the NCBI nr database and none in the NCBI EST

database and no Next Generation Sequencing (NGS) project has

been published so far (NCBI, November 2013).

The aim of the present study was to assess the transcriptome

and the gene expression profile of five developmental stages of the

Atlantic bonito ranging from the pre-larvae up to the juvenile. The

detection of a great variety of transcripts and possible isoforms

isolated for the first time in the Atlantic bonito are described.

Furthermore the expression profiles for the five developmental

stages with stage specific gene expression are discussed including

part of the muscle transcriptome showing significant differential

gene expression at the later stages.

Methods

All procedures involving the handling and treatment of fish used

during this study were approved by the HCMR Institutional

Animal care and use committee following the three Rs (3 Rs,

Replacement, Reduction, Refinement) guiding principles for more

ethical use of animals in testing, first described by Russell and

Burch in 1959. These principles are now followed in many testing

establishments worldwide prior to initiation of experiments. The

larvae were anaesthetized using 100–200 mg/L MS222 (tricaine

methanesulfonate, Sigma-Aldrich, USA) depending on fish size.

Afterwards samples were immersed in the RNA later (Ambion,

Austin, TX, USA) were transferred to an 80uC ultra-low freezer

until preparation of RNA. All experiments were carried out within

the specific European RTD program of Framework Program 7,

Theme 2-Food, Agriculture, Fisheries and Biotechnology (Project

SELFDOTT) which is supervised by the European commission

and follows the European Union Directive for the for the

protection of animals used for experimental and other scientific

purposes.

Larval Rearing
Larval rearing was performed at HCMR and IEO following

semi-intensive methodologies [23,24] for a period of 40 days.

Tanks were filled with natural seawater (salinity 40 ppt), while

water for subsequent renewal was pumped from a littoral well

(salinity 35 ppt, temperature 2061uC).

Sampling
In total three larvae (whole larvae) of five different develop-

mental stages (0 dph, 5 dph, 10 dph, 20 dph and 30 dph) were

pooled, collected in RNAlater (Qiagen, Hilden, Germany) and

stored at 280uC for transcriptome analysis. Sampling points and

maturation are illustrated in Figure 1. At the first stage,

immediately after hatching, the larvae are almost colorless, they

are feeding endogenously and have not developed sensing and

digestive system (pre-larvae). At the second stage (5 dph) larval

have developed a pigmented retinal epithelium, the lower jaw

protrudes and melanophores are appearing on the dorsal surface,

they are feeding exogenous food and have developed (although not

fully) sensing and digestive systems. At the third stage (10 dph,

flexion) the moving capacity of the individuals is improved

allowing rapid acceleration towards prey and the digestive system

is fully developed. The fourth (20 dph, post-flexion) stage is

marked by increased melanophore pigmentation and further

improvement of the swimming capacity, while the last stage

studied (30 dph) is prior to the second metamorphic transition and

represents the fully developed larvae (Figure 1).

RNA Extraction
Whole larvae of each stage were submitted to RNA extraction.

Disruption of the samples was performed in liquid nitrogen using

mortar and pestle. After adding lysate buffer, the lysate was

homogenized by passing it through a 20-gauge (0.9 mm) needle

attached to a sterile plastic syringe for 5 times. RNA was

subsequently extracted using the RNA extraction Kit II of

Machinery Nagel (Dueren, Germany), according to the manufac-

turers’ instructions. RNA concentrations were determined using

NanoDrop ND-1000 spectrophotometer (NanoDrop Technolo-

gies Inc., Wilmington USA) and the quality was assessed by

electrophoresis on a 1% ethidium bromide agarose gel as well as

by the A260/280 ratio and by Agilent 2100 Bioanalyzer using a

RNA Nano Bioanalysis chip.

NGS Sequencing
Samples for RNA sequencing (RNA-Seq) were prepared by

Cornell University Core Laboratories Center using standard

methods and sequenced over two lanes of Illumina HiSeq vs 2000.

In one lane, extracted RNA from mixed developmental stages

were sequenced as paired-end, 100 bp reads. On the second lane,

each of the five developmental stages were tagged and sequenced

as 100 bp, single-end reads. Reads from each stage were

distinguished through the use of mulitplex identifier (MID) tags.

Sequence quality was assessed using FastQC (version 0.10.0;

http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and

low quality reads were removed with Trimmomatic software

[25]. Sequence data from the mixed developmental stages were

assembled using Trinity, version 2012-06-08 [26]. Raw sequence

data are submitted to the Short Read Archive (SRA) database of

NCBI under the accession numbers SAMN02044484 (Mixed

stages), SAMN02044485 (Bon0), SAMN02044486 (Bon5),

SAMN02044487 (Bon10), SAMN02044488 (Bon20),

SAMN02044489 (Bon30).

Single Nucleotide Polymorphism (SNP) and Microsatellite
Identification

Sequences were clustered using the default parameters of the

CD-HIT-EST tool [27] and only the longest transcripts were

retained. The sequence alignment data of these transcripts where

then screened for sites with possible single nucleotide polymorphic

(SNP) variation as well as patterns of simple sequence repeats

RNAseq of the Sarda sarda Larvae Transcriptome
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(SSR) using freebayes (version 0.8.7; http://bioinformatics.bc.

edu/marthlab/FreeBayes) and Msat identification tool [28]

respectively. SNPs were called when a site had a minimum

coverage of 20 reads where at least 35% of the reads with quality

scores greater than 30 supported the alternative allele. Microsat-

ellites were reported for transcripts carrying motifs of di-, tri-,

tetra-, penta- and hexa-nucleotides for a minimum of 8 repeats.

Expression Analysis
Transcripts expression profiles were assessed for each develop-

mental stage using the single read sequences retrieved from each

stage by mapping the reads against the reconstructed assembly

using bowtie [29] allowing maximum of 3 mismatches throughout

the entire length of the read. Expression abundances were

quantified using RSEM version 1.2.3 [30]. Contigs with low read

support (less than one read per million mappable reads) were

excluded from downstream analysis. Pairwise abundance of

transcript estimates between any two developmental stages were

investigated using the R Bioconductor package DESeq [31].

Contigs that in accordance to DESeq, were found to have a

p,0.05 and a minimum of 2 fold differences in their expression

between different stages were assigned as differentially expressed.

Functional Annotations and Gene Ontology
Assembled transcripts were submitted against the non-redun-

dant protein database (nr) as well as the non-redundant nucleotide

database (nr/nt) using the standalone BLAST tools (version 2.2.25)

[32] with cut-off e-values of 1026 and 10210 respectively.

Annotations and GO terms were assigned using Blast2Go software

[33].

Cluster Analysis
Transcripts assigned to be differentially expressed were submit-

ted to K-means clustering method. K means clustering is the most

appropriate clustering method when more than 200 data points

are analysed [34]. The cluster number was set from 3 to 10.

Distances were computed using simple Euclidean distance and the

maximum number of iteration was fixed to 50. The cluster-cluster

distance was calculated by determining the distance between

centroids. Discriminant analysis, testing the classification of groups

obtained by K-means clustering was performed. For K-means

clustering and Discriminant analysis the statistical software

package SPSS 12.0 (SPSS; Chicago, IL) was used. Heatmaps of

obtained clusters were constructed using the R-Package [35].

VENN Diagram and Enrichment Analysis
Venn diagram was constructed using all differentially expressed

genes using as reference stage Bon0. To find enrichment in gene

Figure 1. Developmental stages of Sarda sarda. Graphical presentation of Atlantic bonito developmental stages. Red arrows indicate sampling
points. X-axis: days after hatching Y-axis: total length in mm.
doi:10.1371/journal.pone.0087744.g001
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ontology (GO) terms, enrichment analysis (Fisher’s Exact Test)

tool in Blast2GO software was used with term filter value p,0.05,

term filter mode ‘‘False Discovery Rate (FDR)’’ and two-tailed

test. Reference data set were all mapped genes onto the

constructed reference transcriptome and test data set used in the

present analysis were all transcripts found to be differentially

expressed only at stage 30 when comparing all stages under study

to stage 0.

Network Analysis
In order to infer the module networks the LeMoNe algorithm

was used. LeMoNe uses ensemble based probabilistic optimization

techniques to identify clusters of co-expressed transcripts as well as

their regulators. In this study the normalized log2 values of all

stages were used as input of transcript expression. Annotated

transcription factors were used as potential regulators. LeMoNe

assigned the corresponding regulators in each module character-

ized by a particular weight. The visualization of the regulatory

networks was performed with Cytoscape v. 2.7.0, where transcripts

being differentially expressed only between stage Bon0 and Bon5

were filtered out in the present study.

Phylogenetic Tree Construction
Homologue nucleotide sequences of comp49187_c0_seq1 and

comp6057_c0_seq1 with the blastx match myozenin-2-like (Table

S1) were used for phylogenetic tree construction. Multiple

sequence alignments were performed using ClustalW on Bioedit.

Maximum likelihood analysis was performed using MEGA4

[36,37] and the phylogenetic tree was obtained after burning

1,000 trees. The numbers at the nodes indicate posterior

probability values. The tree was rooted using the myozenin-2-

sequence from human and horse.

Results

Transcriptome Sequencing
RNA Seq was carried out on RNA extracted from 5 different

developmental stages of the Atlantic bonito. A total number of

Table 1. Summary of Illumina reads used for transcriptome assembly retrieved from one library containing different
developmental stages.

Illumina HiSeq2000 vs3 paired-end reads

Left read:

Total number of reads used for assembly: 162,109,074

Total number of base pairs: 16,039,836,009

Average number of read len: 98.94

Right read:

Total number of reads used for assembly: 162,109,074

Total number of base pairs: 16,251,330,770

Average number of read len: 100.25

Total number of reads: 169,326,711

Both ends survived: 162,109,074 (95.74%)

Forward survived: 3,992,316 (2.36%)

Reverse survived: 1,881,149 (1.11%)

Dropped: 1,344,172 (0.79%)

Assembly statistics after filtering

Number of contigs: 68,220

Total number of base pairs: 139,888,259

Number of bases per nucleotide type: A: 37,741,180; C: 32,508,872; G: 32,639,932; T: 37,202,26

Average number of contig len: 2054

N50: 3011

N90: 1013

doi:10.1371/journal.pone.0087744.t001

Table 2. Summary of putative SNP identification from the
Atlantic bonito (S. sarda) expressed short reads.

Atlantic bonito (S. sarda)

Contigs under analysis 55213

Total SNPs 156507

Transitions 23375

Transversions 133132

Total Microsatellites 2714

AC 784

AG 412

AT 226

CT 183

GT 1096

tri-nucleotide CTC (2x), TGA

tetra-nucleotide GATT(2X), TCCT,TGGC, ATTT, CAAA

Hexa nucleotide TGGAGC (3X), CTAATG

Putative SNPs site include all base variation with a minimum of 20 reads and at
least 35% of the reads support the alternative allele.
doi:10.1371/journal.pone.0087744.t002
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Figure 2. GO annotation. Distribution of GO annotation terms at level 2 for biological process and molecular function in the Atlantic bonito
transcriptome.
doi:10.1371/journal.pone.0087744.g002
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169,326,711 paired-end reads with a read length of 100 bp were

generated. After filtering 162,109,074 clean reads were obtained

for assembly analysis (Table 1).

De novo Assembly of the Atlantic Bonito Transcriptome
The assembly returned 68,220 contigs with an average length of

2054 bp (Table 1) and is submitted to the Fish-it database (http://

www.fish-it.org). This set was used as reference transcriptome for

differential expression assessment as well as for the enrichment

analysis. Putative single nucleotide polymorphisms (SNPs) and

microsatellites were identified and summarized in Table 2 and

Table S2.

Gene Identification and Annotation
BLASTX and BLASTN searches were performed for annota-

tion of the Atlantic bonito transcriptome assembly. Out of 68,220

Table 3. Summary of mapping statistics obtained from five different developmental stages.

Sample # of reads # reads with at least one reported alignment

Bonito 0 dph 36,846,289 30,514,092 (82.81%)

(single-end)

Bonito 5 dph 40,043,500 33,499,703 (83.66%)

(single-end)

Bonito 10 dph 37,598,540 31,651,338 (84.18%)

(single-end)

Bonito 20 dph 38,244,043 31,096,139 (81.31%)

(single-end)

Bonito 30 dph 52,154,449 42,934,570 (82.32%)

(single-end)

Mixed Stages 169,326,711 139,359,237 (82.30%)

(paired-end)

TOTAL 374,213,532

doi:10.1371/journal.pone.0087744.t003

Figure 3. Canonical discrimination functions. Clustering of clones with differential expression identified by DESeq (pval ,0.05) in each pair wise
comparison. The data points given (cases 1–5) were grouped in five main clusters (colored yellow, grey, blue, green and violet respectively). The
group centroid represents the average value of the cases contained in each cluster.
doi:10.1371/journal.pone.0087744.g003
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contigs obtained after assembly, 43,312 (,63%) showed a

significant match against the protein database (nr) and 46,224

(, 68%) had a positive match against the nucleotide database (nr/

nt) of GenBank. Blast2GO analysis of the different annotations

related to biological process revealed that the majority of

transcripts are categorized to nine gene ontology (GO) terms:

Cellular process (19%), metabolic process (14%), biological

regulation (12%), response to stimulus (9%), multicellular organ-

ismal process (8%), signaling (7%) developmental process (7%),

localization (7%) and cellular component organization of biogen-

esis (6%). Blast2GO analysis of the different annotations related to

molecular function classified the majority of transcripts to the

binding (45%) and catalytic activity (26%) categories (Figure 2).

Assessment of Differential Gene Expression
Single end reads were assessed from each stage separately and

mapped onto the constructed reference transcriptome (Table 3).

On average 82% of the sequence reads from each stage were

mapped successfully and used for downstream expression analysis.

Expression abundances are shown in Table S1. In total 18,657

transcripts were found to be differentially expressed (p value

,0.05, and minimum of 2 fold difference) in one of the pair-wise

comparison of the stages. Those transcripts found to be

differentially expressed at least in one of the stages, were subjected

to K-means clustering having the largest F-values when the cluster

number was set to five (data not shown) (Figure 3). Cluster

methods are frequently used for grouping genes by their

expression patterns. Expression profiles are visualized as heatmaps

using the R software package (Figure 4). The color displays up

(red) and down (green) regulation between the stages. Clearly each

of the five clusters shows genes specifically expressed in one of the

five stages. Discriminant analysis confirmed K means clustering

method by successfully grouping 94.1% in the predicted clusters.

Analysis of Differentially Expressed Genes
Stage specific transcripts using stage Bon0 as reference stage (in

total here 12,797) are illustrated by a Venn diagram in Figure 5.

The number of transcripts found in only one of the stages are

within the same size range [on average 1878 (, 15%)], and 1153

(9%) transcripts are in common for all five stages. Enrichment

Figure 4. Illustration of the five clusters by heat map images. Heat map images showing the genes grouped by the K-means clustering
method. Stages are indicated under each column. Gene expression is shown in rows. The quantitative changes in gene expression are represented in
color: red indicates up-regulation whereas green indicates down-regulation.
doi:10.1371/journal.pone.0087744.g004

Figure 5. Venn diagram. Venn diagram comparing significant
differentially expressed genes between stages 5 dph, 10 dph, 20 dph
and 30 dph compared to 0 dph.
doi:10.1371/journal.pone.0087744.g005
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analysis with the set of genes found uniquely in Atlantic bonito

stage 30 dph and using all transcripts obtained after assembly of

mixed developmental stages as reference test set revealed genes

mainly involved in muscle development (Figure 6). All major

sarcomeric proteins found are listed in Table S3. Investigation in

transcripts appearing early in development is of special interest as

major functional mechanisms are set. Several studies have shown

that particular gene families like homeobox proteins, nuclear

receptors, sox genes and forkhead box proteins have established

roles in developmental processes. Table S4 summarizes all

transcripts found in the present study with a relevant role in the

post-embryonic development. Thus, after network analysis, the

focus was primarily to investigate the relation of differentially

expressed transcription factors between stages Bon0 and Bon5

(Figure 7). Interestingly two of the main hubs seem to be two

different forms (comp55305_c0_seq1 and comp55305_c0_seq2) of

one gene (general transcription factor IIH subunit 2-like). Those

two transcripts differ from another only at the end of their 3’UTR

(Figure 8, Figure S1). The third hub within the main network is

coding for the transcription factor ETV6-like (comp26881_c0_-

seq2) which shows up regulation at stage 0 compared to stage 5.

According to the KEGG pathway the transcription factor ETV6-

like is involved in the dorso-ventral axis formation showing the

importance of this transcript within development.

Discussion

This work describes the first assessment of the Atlantic bonito

transcriptome as well as differential expression between five

developmental stages. During the production cycle of marine fish,

the welfare of larval stages are of great importance as they

experiences high grow rates and impressive changes in anatomy

and physiology [3]. Several studies have shown that RNA Seq is a

robust approach to perform transcriptome profiling [2–4]. Most

studies in non-model fish species have used GS454 Titanium

technology for RNAseq and assessment of differential expression.

However in order to obtain high throughput several runs have to

be performed (e.g. [19]) or/and differential expression can be

detected by 3’ UTR tagging [21]. In the present study a reference

transcriptome of the Atlantic bonito was constructed using paired

end reads (PE) of one Illumina lane (, 16 Gb, Table 1) from

equally mixed developmental stages. The paired-end reads

generated resolve assembly problems due to repetitive regions.

The number of contigs obtained after assembly are counted to

68,220 with an average length of 2054 bp and N50 of 3011 bp

(Table 1). For non-model species high throughput 454 sequencing

which provides longer reads has been widely used up until today as

de novo assembly of short reads without a reference transcriptome

were still difficult. However using Illumina technology of

sequencing paired-end reads facilitates the assembly and using a

combined assembly and mapping strategy results in a reasonable

and accurate reference transcriptome which is also strongly

supported by the obtained results of sequence average length

and N50 length. Transcripts expression profiles were assessed by

high throughput single end sequence (SE) data from each

developmental stage which was mapped against the reconstructed

assembly using bowtie [29] (Table 3). As for de novo transcriptome

assembly PE reads are of importance, for assessing differentially

expressed genes the sequencing depth is significant [38,39,40]. PE

does not give more statistical power than SE as a PE read and a SE

read both count as a single tag. However for differential expression

analysis only counting tags is critical. Thus by performing an

additional Illumine SE sequencing for each stage separately the

acquired sequencing depth for detection of differential expression

was assured. In addition the high mapping percentages of the

single reads obtained from each stage (,80%, Table 3) confirm

the high and accurate transcriptome assembly. Nevertheless

RNAseq using NGS technology has to be considered as a scan

Figure 6. Differential GO-term distribution. Enrichment analysis with the set of genes found only in Atlantic bonito stage 30 dph after
comparison between stages 5, 10 and 20 dph with stage 0 dph. Reference test set: transcripts obtained after assembly of mixed developmental
stages. Test set: transcripts found only in Atlantic bonito stage 30 after comparison to stage 5, 10 and 20 dph.
doi:10.1371/journal.pone.0087744.g006
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of the transcriptome in order to set the basis for further functional

studies on specific genes. In the present study transcripts were

annotated by performing BLASTX and BLASTN searches against

the databases of NCBI. Several transcripts are showing similar or

even the same BLAST matches (Tables S3 and S4). They may

present paralogues or different isoforms. One example of identical

gene blast match represents the match ‘‘PREDICTED: myozenin-

2-like [Oreochromis niloticus]’’ of the two transcripts

comp49187_c0_seq1 and comp6057_c0_seq1. Here homolog

sequences for seven fish species were retrieved from NCBI

databases followed by phylogenetic tree construction (Figure 9).

Two clearly separated groups were identified characterizing the

one group as myozenin 2b and the other as myozenin 2 or myozenin-like

but not as myozenin 2a. Thus here most probably an additional

paralogue exists. All transcripts with similar or identical BLAST

match were aligned to each other to assure their uniqueness. In

addition comparative BLAT search were performed to four model

fish species mapping some of those transcripts to different

chromosomes (Table 4). This confirms the existence two

transcripts with the same or similar BLAST matches and pinpoints

to possible paralogues genes.

A common step for microarray analysis is cluster analysis of

differentially expressed genes. Cluster analysis permits to classify

samples of entities into a small number of mutually exclusive

groups based on the similarities among the entries. In the present

study the obtained groups were confirmed by discriminant analysis

in which up to 95% were successfully grouped in the predicted

clusters. Four of the five clusters show exclusive up-regulation in

one of the developmental stages, i.e. cluster 2 stage Bon 30, cluster

3 stage Bon 0, cluster 4 stage Bon 20 and cluster 5 stage Bon 5.

Cluster 1 comprises a small set of genes showing up-regulation

exclusively in stage Bon 10 (Figure 4). Transcripts of each cluster

including their annotations are listed in Table S1. In addition,

genes belonging to gene families with established roles in

embryonic and developmental processes as described by Yufera

et al. [13] were identified to be differentially expressed between

the five stages (Table S4). Interestingly looking at genes belonging

to the homeobox protein family showed that they were present

and up-regulated in clusters 1, 3 and 5 but absent or low abundant

in cluster 2 and 4. The former three clusters comprise mainly

genes up regulated at the earlier stages i.e. stage 0 dph (clusters 3

and 5) and stage 5 dph (clusters 1 and 5). Cluster 4, with only two

representatives of the homeobox protein family mainly comprises

Figure 7. Network analysis. Simplified representation of the module network inferred by the LeMoNe algorithm. Clusters of co-expressed genes
(modules) have diamond black shapes, while transcription factors are symbolized by circles. The color of the circle correspond either to up-regulation
in stage Bon5 dph (red) or down-regulation (green) in stage Bon5 dph in relation to sage Bon0 dph. Blast matches of illustrated transcription factors
are as followed: comp55305_c0_seq1 and comp55305_c0_seq2: general transcription factor IIH subunit 2-like; comp26881_c0_seq2:
transcription factor ETV6-like; comp47617_c0_seq1: transcription factor HIVEP2; comp123202_c0_seq4: POU domain, class 2, transcription
factor 1-like; comp100802_c0_seq8: transcription factor CP2-like protein 1.
doi:10.1371/journal.pone.0087744.g007
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transcripts found to be up-regulated at stage 20 dph and cluster 2

with no representative of the homeobox protein family comprises

mainly transcripts found to be up-regulated at stage 30 dph. This

clearly shows the significance of the first three stages in relation to

Figure 8. 39UTR alignment. Alignment of the end of the 39UTR of two different forms of one transcript, general transcription factor IIH subunit 2-
like (comp55305_c0_seq1 and comp55305_c0_seq2) identified as main hubs in the network inferred by the LeMoNe algorithm. The two transcripts
differ from each other only at the end of the 3’UTR which comprises two conserved 7 mers (PUF, and CIF, Table 5) where the one is present in
comp55305_c0_seq1 and the other in comp55305_c0_seq2. Both conserved 7 mers were retrieved from Andreassen et al. [34]. Complete alignment
of the two transcripts is shown in Figure S1.
doi:10.1371/journal.pone.0087744.g008

Figure 9. Molecular Phylogenetic analysis by Maximum Likelihood method. The phylogenetic tree of myozenin-2-like was inferred by using
the Maximum Likelihood method based on the Tamura-Nei model [36]. The percentage of trees in which the associated taxa clustered together is
shown next to the branches. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved
18 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. There were a total of 886 positions in the final dataset.
Evolutionary analyses were conducted in MEGA5 [37].
doi:10.1371/journal.pone.0087744.g009
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Table 4. Comparative mapping of transcript with same or similar blast match to four model fish species with available whole
genome sequences.

Blast match Transcript Danio rerio Oryzias latipes Gasterosteus aceculeatus Tetraodon nigroviridis

homeobox protein otx5-like comp11286_c0_seq2 15 14 VII 7

comp11286_c0_seq3 15 13 I 16

transcription factor SOX-6-like isoform 1 comp23068_c1_seq17 7 3 II 5

transcription factor Sox-6-like comp23068_c1_seq15 7 6 XIX 5

comp23068_c1_seq18 7 6 XIX 13

Sox 19 comp96498_c0_seq1 7 18 VII Un

comp72863_c0_seq1 n/a n/a VII Un

Sox 11b comp372390_c0_seq1 20 Scf 709 n/a 10

comp29608_c2_seq1 20 22 XV 10

homeobox protein engrailed-2a-like comp85602_c0_seq1 7 20 XXI 6

comp85674_c0_seq1 7 20 XXI 6

homeobox protein engrailed-2b-like comp204683_c0_seq1 n/a n/a III Un

homeobox protein orthopedia B-like isoform 1 comp47586_c0_seq6 21 9 XIII 12

comp55341_c0_seq2 21 12 XIV 4

comp67761_c0_seq1 21 9 XIV 4

homeobox protein orthopedia B-like isoform 2 comp47586_c0_seq5 21 9 XIII 12

Zinc finger homeobox protein 4 comp36475_c0_seq8 24 20 XXI 6

comp3751_c0_seq12 7 20 XXI Un

nuclear receptor subfamily 1 group D member 1-like comp31421_c0_seq1 23 5 Un 11

comp31421_c0_seq2 23 5 n/a 11

comp41077_c0_seq1 n/a 16 X Un

Nuclear receptor subfamily 1 group D
member 2-like

comp110302_c0_seq1 11 7 XII 9

comp96775_c0_seq1 23 7 XII

comp50659_c0_seq1 n/a 5 Un 11

comp6400_c0_seq3 19 scf3618 X Un

comp6400_c0_seq4 19 scf3618 X Un

Myozenin-2-like Comp49187_c0_seq1 14 10 IV 1

Comp6057_c0_seq1 1 22 VII Un

calpain-2 comp4444_c1_seq1 22 ultractg1 IX n/a

comp4444_c1_seq4 22 scf1395 IX 19

obscurin-like comp67664_c0_seq38 8 4 VIII 2

obscurin-like protein 1-like comp48590_c0_seq1 6 2 I 4

troponin I, slow skeletal muscle-like comp17106_c0_seq1 18 n/a XIX 20

comp63836_c0_seq1 6 5 XVII n/a

doi:10.1371/journal.pone.0087744.t004

Table 5. Conserved 7-mers found in comp55305.

Motif Position Found in sequence Proteins known to bind3’UTR target sequence

TGTCTGT 658 bp Comp55305_c0_seq1 and seq2 n/a

TGTCTGT 918 bp Comp55305_c0_seq1 and seq2 n/a

TTGTATT 2859 bp Comp55305_c0_seq1 and seq2 CFI

TTGTATT 2807 bp Comp55305_c0_seq2 CFI

TGTAAAT 1545 bp Comp55305_c0_seq1 and seq2 PUF

TGTAAAT 2918 bp Comp55305_c0_seq1 PUF

doi:10.1371/journal.pone.0087744.t005
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development as homeobox proteins are known to play an

important role in pattern formation. Furthermore homeobox

proteins like orthodenticle-related (OTX), LIM and visual system

which are involved in eye formation are also found to be up-

regulated in the first three stages studied. Eye formation is of

importance for pelagic fish as they have to hunt for feeding. In

zebrafish it has been shown that OTX transcription factors are

required for retinal pigment epithelium development but unlike in

mouse microphthalmia-associated transcription factor (Mitf) is not

[41]. In the present study Mitf has been identified but does not

show significant differential expression within the five stages. In

contrast to Mitf the role of Otx in eye formation is conserved

between zebrafish and other vertebrates indicating it importance

in development. Besides transcripts which show differential

expression between stages also transcripts were found exclusively

in only one of the stages. Figure 5 shows a Venn diagram where

stage Bon0 was used as reference stage. Consequently transcripts

being present only in one of the other stages can be filtered out.

The amount of stage specific transcripts varies from 1,490 in stage

5 to 2,187 found to be present only in stage 10. By enrichment

analysis using those transcripts found only in stage Bon30 revealed

that the majority of them are involved in muscle development.

These results are to be expected as animals in the late larvae post-

flexion stage form the characteristic body shape for scombrids and

develop lateral muscle fields. In addition the inactive periods of the

previous stages are not present and animals are more or less

constantly active. Table S3 shows all muscle genes found which

were described in a previous study of fast skeletal muscle

transcriptome of sea bream [19]. Besides the identification of

important transcripts of the Atlantic bonito muscle transcriptome

this result also corroborate the experimental set up and analysis

method used in the present study as it is in accordance to the

physiology of the larvae development. Interestingly, network

analysis of differentially expressed transcripts between stage

Bon0 and stage Bon5 revealed that two isoforms are differentially

expressed with regard to each other (Figure 7). Whereas the one

isoform of the general transcription factor IIH subunit 2-like

(comp55305_c0_seq1) is up-regulated the other one

(comp55305_c0_seq2) is down-regulated. The two different forms

of the transcript transcription factor IIH subunit 2-like were

identified as main hubs in the network inferred by the LeMoNe

algorithm. The two transcripts differ from each other only at the

end of the 3’UTR. However this region comprises two conserved

7 mers (PUF, and CFI, Table 5) where the one is present in

comp55305_c0_seq1 and the other in comp55305_c0_seq2. Both

conserved 7 mers were retrieved from Andreassen et al. [42]

where authors describe in total 11 conserved 7 mers in the Atlantic

salmon being significantly over-represented in the 3’UTR. The

Puf family is known to bind target sequences in the 39UTRs and in

this manner to regulate mRNA expression whereas the CFI target

sequence is in involved in polyadenylation site recognition.

Conclusion

The present study is the first report of a transcriptome study in

the Atlantic bonito (S. sarda). We demonstrate that transcriptome

analysis as well as assessment of differential expression of RNA

samples using Illumina sequencing technology is technically

efficient and with low cost. A total of 68,220 contigs have been

constructed out of a total number of 169,326,711 100 bp paired-

end reads. Differential expression between five important devel-

opmental stages has been assessed and stage specific genes were

isolated. It has been shown that in earlier stages transcripts like

homoebox genes are up-regulated whereas in the later stage

transcripts important for muscle development are found to be

higher expressed. The generated transcripts, microsatellite and

SNP information for candidate molecular markers as well as gene

expression information will be valuable information for future

genetic and molecular studies in the Atlantic bonito and closely

related species pinpointing also to the importance of studying the

3’UTR as well as paralogues during development.
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