27 research outputs found

    Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy

    Get PDF
    Abstract Oxidative stress acts as a double edged sword by being both a promoter and a suppressor of cancer. Moderate oxidative stress is beneficial for cancer cell proliferative and invasiveness features, while overexposure of the cells to oxidative insults could induce cancer cell apoptosis and reduce hypoxia along with modulating the immune system for regression of tumor. Cancer cells and cancer stem cells have highly efficient redox systems that make them resistant to oxidative insults. The redox disruptive approach is an area of current research and key for oxidative targeted cancer therapies. This disruption is applicable by using either oxidative or anti oxidative overloading strategies, specifically on cancer cells without influencing normal cells or tissues around tumor. The activity of tumor suppressor cells within tumor microenvironment is needed to be maintained in patients receiving such approaches. KEYWORDS: cancer, oxidative stress, reactive oxygen species (ROS), redo

    Cyclooxygenase-2 in cancer: A review

    Get PDF
    Cyclooxygenase-2 (COX-2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo- and radiotherapy. COX-2 is released by cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX-2 induces cancer stem cell (CSC)-like activity, and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells. COX-2 mediated hypoxia within the TME along with its positive interactions with YAP1 and antiapoptotic mediators are all in favor of cancer cell resistance to chemotherapeutic drugs. COX-2 exerts most of the functions through its metabolite prostaglandin E2. In some and limited situations, COX-2 may act as an antitumor enzyme. Multiple signals are contributed to the functions of COX-2 on cancer cells or its regulation. Members of mitogen-activated protein kinase (MAPK) family, epidermal growth factor receptor (EGFR), and nuclear factor-κβ are main upstream modulators for COX-2 in cancer cells. COX-2 also has interactions with a number of hormones within the body. Inhibition of COX-2 provides a high possibility to exert therapeutic outcomes in cancer. Administration of COX-2 inhibitors in a preoperative setting could reduce the risk of metastasis in cancer patients. COX-2 inhibition also sensitizes cancer cells to treatments like radio- and chemotherapy. Chemotherapeutic agents adversely induce COX-2 activity. Therefore, choosing an appropriate chemotherapy drugs along with adjustment of the type and does for COX-2 inhibitors based on the type of cancer would be an effective adjuvant strategy for targeting cancer. © 2018 Wiley Periodicals, Inc

    The role of melatonin on chemotherapy-induced reproductive toxicity

    Get PDF
    Abstract Objectives Reproductive malfunctions after chemotherapy still are a reason of reducing fertility and need specialized intensive care. The aim of this review was to investigate the effect of melatonin on the reproductive system under threatening with chemotherapeutic drugs. Methods To find the role of melatonin in the reproductive system during chemotherapy, a full systematic literature search was carried out based on Preferred Reporting Items for Systematic Reviews and Meta‐Analyses guidelines in the electronic databases up to 17 April 2017 using search terms in the titles and abstracts. A total of 380 articles are screened according to our inclusion and exclusion criteria. Finally, 18 articles were included in this study. Key findings It has been cleared that melatonin has bilateral effects on reproductive cells. Melatonin protects normal cells via mechanisms, including decrease in oxidative stress, apoptosis, inflammation and modulating mitochondrial function, and sexual hormones. Furthermore, melatonin with antiproliferative properties and direct effects on its receptors improves reproductive injury and function during chemotherapy. On the other hand, melatonin sensitizes the effects of chemotherapeutic drugs and enhances chemotherapy‐induced toxicity in cancerous cells through increasing apoptosis, oxidative stress and mitochondrial malfunction. Conclusions The study provides evidence of the bilateral role of melatonin in the reproductive system during chemotherapy

    Cyclooxygenases and the cardiovascular system.

    Get PDF
    Cyclooxygenase (COX)-1 and COX-2 are centrally important enzymes within the cardiovascular system with a range of diverse, sometimes opposing, functions. Through the production of thromboxane, COX in platelets is a pro-thrombotic enzyme. By contrast, through the production of prostacyclin, COX in endothelial cells is antithrombotic and in the kidney regulates renal function and blood pressure. Drug inhibition of COX within the cardiovascular system is important for both therapeutic intervention with low dose aspirin and for the manifestation of side effects caused by nonsteroidal anti-inflammatory drugs. This review focuses on the role that COX enzymes and drugs that act on COX pathways have within the cardiovascular system and provides an in-depth resource covering COX biology and pharmacology. The review goes on to consider the role of COX in both discrete cardiovascular locations and in associated organs that contribute to cardiovascular health. We discuss the importance of, and strategies to manipulate the thromboxane: prostacyclin balance. Finally within this review the authors discuss testable COX-2-hypotheses intended to stimulate debate and facilitate future research and therapeutic opportunities within the field

    Fusobacterium nucleatum and colorectal cancer: A mechanistic overview

    No full text
    Colorectal cancer (CRC) is the third most prevalent cancer in the world. There are many risk factors involved in CRC. According to recent findings, the tumor microenvironment and feces samples of patients with CRC are enriched by Fusobacterium nucleatum. Thus, F. nucleatum is proposed as one of the risk factors in the initiation and progression of CRC. The most important mechanisms of Fusobacterium nucleatum involved in CRC carcinogenesis are immune modulation (such as increasing myeloid-derived suppressor cells and inhibitory receptors of natural killer cells), virulence factors (such as FadA and Fap2), microRNAs (such as miR-21), and bacteria metabolism. The aim of this review was to evaluate the mechanisms underlying the action of F. nucleatum in CRC. © 2018 Wiley Periodicals, Inc

    Additional file 1: of Clinical utility of blood neutrophil-lymphocyte ratio in Japanese COPD patients

    No full text
    Table S1. Predictors of high NLR (NLR ≥ 2.7) by univariate logistic regression analysis. Table S2. Predictors of moderate or severe exacerbation by univariate logistic regression analysis. Table S3. Predictors of moderate or severe exacerbation by multivariate logistic regression analysis. (DOCX 19 kb
    corecore