1,236 research outputs found

    A novel video game peripheral for detecting fine hand motion and providing haptic feedback

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 51-53).This thesis documents the design and implementation of a game controller glove that employs optical tracking technology to detect movement of the hand and fingers. The vision algorithm captures an image from a webcam in real-time and determines the centroids of colored sections on a glove worn by the player; assigning a distinctive identifier for each section which is associated with a 3D model retrieved from a preexisting library. A Vivitouch artificial muscle module is also mounted to the top of the glove to provide vibratory haptic feedback to the user. The system has been user tested and a number of potential use scenarios have been conceived for integration of the controller in various gaming applications.by Samantha N. Powers and Lauren K. Gust.S.B

    High Effective Coverage of Vector Control Interventions in Children After Achieving Low Malaria Transmission in Zanzibar, Tanzania.

    Get PDF
    \ud \ud Formerly a high malaria transmission area, Zanzibar is now targeting malaria elimination. A major challenge is to avoid resurgence of malaria, the success of which includes maintaining high effective coverage of vector control interventions such as bed nets and indoor residual spraying (IRS). In this study, caretakers' continued use of preventive measures for their children is evaluated, following a sharp reduction in malaria transmission. A cross-sectional community-based survey was conducted in June 2009 in North A and Micheweni districts in Zanzibar. Households were randomly selected using two-stage cluster sampling. Interviews were conducted with 560 caretakers of under-five-year old children, who were asked about perceptions on the malaria situation, vector control, household assets, and intention for continued use of vector control as malaria burden further decreases. Effective coverage of vector control interventions for under-five children remains high, although most caretakers (65%; 363/560) did not perceive malaria as presently being a major health issue. Seventy percent (447/643) of the under-five children slept under a long-lasting insecticidal net (LLIN) and 94% (607/643) were living in houses targeted with IRS. In total, 98% (628/643) of the children were covered by at least one of the vector control interventions. Seasonal bed-net use for children was reported by 25% (125/508) of caretakers of children who used bed nets. A high proportion of caretakers (95%; 500/524) stated that they intended to continue using preventive measures for their under-five children as malaria burden further reduces. Malaria risk perceptions and different perceptions of vector control were not found to be significantly associated with LLIN effective coverage While the majority of caretakers felt that malaria had been reduced in Zanzibar, effective coverage of vector control interventions remained high. Caretakers appreciated the interventions and recognized the value of sustaining their use. Thus, sustaining high effective coverage of vector control interventions, which is crucial for reaching malaria elimination in Zanzibar, can be achieved by maintaining effective delivery of these interventions

    Mass transfer from smooth alabaster surfaces in turbulent flows

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94735/1/grl3757.pd

    From Analogical Proportion to Logical Proportions

    Get PDF
    International audienceGiven a 4-tuple of Boolean variables (a, b, c, d), logical proportions are modeled by a pair of equivalences relating similarity indicators ( a∧b and a¯∧b¯), or dissimilarity indicators ( a∧b¯ and a¯∧b) pertaining to the pair (a, b), to the ones associated with the pair (c, d). There are 120 semantically distinct logical proportions. One of them models the analogical proportion which corresponds to a statement of the form “a is to b as c is to d”. The paper inventories the whole set of logical proportions by dividing it into five subfamilies according to what they express, and then identifies the proportions that satisfy noticeable properties such as full identity (the pair of equivalences defining the proportion hold as true for the 4-tuple (a, a, a, a)), symmetry (if the proportion holds for (a, b, c, d), it also holds for (c, d, a, b)), or code independency (if the proportion holds for (a, b, c, d), it also holds for their negations (a¯,b¯,c¯,d¯)). It appears that only four proportions (including analogical proportion) are homogeneous in the sense that they use only one type of indicator (either similarity or dissimilarity) in their definition. Due to their specific patterns, they have a particular cognitive appeal, and as such are studied in greater details. Finally, the paper provides a discussion of the other existing works on analogical proportions

    Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo

    Get PDF
    Marrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C–Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living culture

    Inelastic response of silicon to shock compression

    Get PDF
    The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported 'anomalous' elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. This model is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature

    Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence

    Get PDF
    Understanding the evolution of virulence is key to appreciating the role specific loci play in pathogenicity. Streptomyces species are generally non-pathogenic soil saprophytes, yet within their genome we can find homologues of virulence loci. One example of this is the mammalian cell entry (mce) locus, which has been characterised in Mycobacterium tuberculosis. To investigate the role in Streptomyces we deleted the mce locus and studied its impact on cell survival, morphology and interaction with other soil organisms. Disruption of the mce cluster resulted in virulence towards amoebae (Acanthamoeba polyphaga) and reduced colonization of plant (Arabidopsis) models, indicating these genes may play an important role in Streptomyces survival in the environment. Our data suggest that loss of mce in Streptomyces spp. may have profound effects on survival in a competitive soil environment, and provides insight in to the evolution and selection of these genes as virulence factors in related pathogenic organisms

    Functionally Redundant RXLR Effectors from <em>Phytophthora infestans</em> Act at Different Steps to Suppress Early flg22-Triggered Immunity

    Get PDF
    Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs), such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs), the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI), significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc) in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the molecular mechanisms underlying the manipulation of host MAMP-triggered immunity (MTI) by P. infestans and to understand the basis of host versus non-host resistance in plants towards P. infestans

    Direct Dynamic Protein-Affinity Selection Mass-Spectrometry

    Get PDF
    A new methodology is described enabling the affinity screening of potential ligands towards the human estrogen receptor alpha ligand binding domain (ERα-LBD). In-solution incubation is performed of the analyte and the His-tagged ERα-LBD. The bound complex is immobilized on a nickel-loaded protein-affinity selection column, where after the unbound fraction is removed. The immobilized protein–ligand complex is exposed to a decreased pH value and an increased organic modifier concentration releasing the ligand for MS detection, and precipitating the proteins on a filter positioned between the affinity column and the mass spectrometer. The trapping column can be regenerated for reuse at least 70 times. The advantages of the methodology over existing methodologies are the absence of a pre-concentration as well as a chromatographic separation step, resulting in a significantly shorter analysis time compared to previously described procedures, and in addition, allowing the determination of solutes with unfavorable chromatographic properties. The overall analysis time now can be reduced about 250% to approximately 6 min. Replacing the filters after every measurement results in an intra-day standard deviation of 14.8% and an inter-day standard deviation of 21.3%

    Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1

    Full text link
    Activation of plant pattern-triggered immunity (PTI) relies on the recognition of microbe-derived structures, termed patterns, through plant-encoded surface-resident pattern recognition receptors (PRRs). We show that proteobacterial translation initiation factor 1 (IF1) triggers PTI in Arabidopsis thaliana and related Brassicaceae species. Unlike for most other immunogenic patterns, IF1 elicitor activity cannot be assigned to a small peptide epitope, suggesting that tertiary fold features are required for IF1 receptor activation. We have deployed natural variation in IF1 sensitivity to identify Arabidopsis leucine-rich repeat (LRR) receptor-like protein 32 (RLP32) as IF1 receptor using a restriction site-associated DNA sequencing approach. RLP32 confers IF1 sensitivity to rlp32 mutants, IF1-insensitive Arabidopsis accessions and IF1-insensitive Nicotiana benthamiana, binds IF1 specifically and forms complexes with LRR receptor kinases SOBIR1 and BAK1 to mediate signaling. Similar to other PRRs, RLP32 confers resistance to Pseudomonas syringae, highlighting an unexpectedly complex array of bacterial pattern sensors within a single plant species
    corecore