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Abstract

Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large
families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or
induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the
modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated
molecular patterns (PAMPs/MAMPs), such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades
and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable,
pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs), the causal
agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested
PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI), significantly suppressed
flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc) in tomato
protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the
aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by
suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase
activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but
not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans
and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and
virulence function. The present study provides a framework to decipher the molecular mechanisms underlying the
manipulation of host MAMP-triggered immunity (MTI) by P. infestans and to understand the basis of host versus non-host
resistance in plants towards P. infestans.
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Introduction

Plants possess innate defense mechanisms to resist microbial

infection [1,2]. Efficient plant disease resistance is based on two

evolutionarily linked layers of innate immunity. One layer involves

cell surface transmembrane receptors that recognize invariant

microbial structures termed pathogen- or microbe-associated

molecular patterns (PAMPs/MAMPs), hereafter referred to as

MAMPs [3–5]. MAMPs are not only shared by particular pathogen

races, but are broad signatures of a given class of microorganisms.

They constitute evolutionarily conserved structures that are unique

to microorganisms and have important roles in microbial physiol-

ogy. Typical MAMPs include lipopolysaccharides (LPS) of

Gram-negative bacteria, bacterial flagellin and fungal cell wall-

derived carbohydrates or proteins, some of which were shown to

trigger plant defense in a non-cultivar-specific manner [3,6]. The

best-studied MAMP receptor in plants is FLAGELLIN-SENSI-

TIVE 2 (FLS2) from Arabidopsis, a receptor-like kinase (RLK) with

extracellular leucine-rich repeat domains [7]. The 22 amino acid

peptide (flg22) corresponding to the highly conserved amino-

terminus of flagellin is sufficient to trigger immune responses in

Arabidopsis, tomato, tobacco and barley but not in rice [8–12].

Although different MAMPs are perceived by different receptors,

convergent early-signaling events, including MAP kinase activation

and specific defense-gene induction, have been observed in

Arabidopsis plants and protoplasts [13–15].
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Suppression of flg22-induced defenses by bacterial virulence

effectors suggests that manipulation of MAMP-triggered immunity

(MTI) in plants is a key strategy for successful pathogens to grow and

multiply (reviewed in [16–19]). A major target of bacterial effectors

is the plant MAP kinase cascade, probably because of the central

role of MAP kinase signaling in MTI. The Pseudomonas syringae

effector HopAI1 displays phosphothreonine lyase activity and

inactivates MPK3, MPK6, and MPK4 in Arabidopsis by dephos-

phorylating them [20]. P. syringae effector HopF2 blocks MAMP-

induced signaling by targeting MKK5, a MAP kinase activating

MPK3/MPK6, through a different mechanism of action i.e. ADP-

ribosylation [21]. Bacterial effectors can also suppress MAP kinase

signaling by targeting the pattern recognition receptor complex as

illustrated by the P. syringae effectors AvrPto and AvrPtoB that block

FLS2-mediated signal transduction in Arabidopsis and tomato [22–

24]. Other effectors appear to act downstream of the activation of

the MAPK cascade by blocking the expression of defense-associated

genes in the nucleus. Such an effector is XopD from Xanthomonas

campestris that inhibits the activity of the transcription factor MYB30,

resulting in suppression of basal immune responses and promotion

of pathogen growth [25,26].

Unlike bacterial effectors, little is known about the molecular

functions of effectors from eukaryotic plant pathogens. It remains

to be demonstrated whether these pathogens have evolved

effectors that subvert early-induced MTI signaling above, at, or

immediately downstream of MAP kinase cascades. Oomycetes,

including downy mildews and Phytophthora species, establish

intimate association with host plant cells through structures such

as appressoria, infection vesicles and haustoria, which are believed

to facilitate the delivery of effectors into the host cytoplasm [27].

The genome sequences of Phytophthora sojae, P. ramorum, P. infestans

and Hyaloperonospora arabidopsidis are published [28–30]. Each

genome encodes several hundred putative RXLR effectors. Most

oomycete Avirulence (Avr) proteins characterized so far carry a

signal peptide followed by a conserved motif centered on the

consensus RXLR-(EER) sequence, where X is any amino acid

[31]. It has been shown that the RXLR peptide motif acts as a

host-targeting signal for translocation into plant cells [31,32].

Amongst the best-characterized oomycete RXLR effectors are

AVR3a, AVRblb2 and PITG_03192 from P. infestans, AVR1b and

AVR3b from the soybean pathogen P. sojae and ATR1 and

ATR13 from H. arabidopsidis [33–47]. P. infestans Avr3a alleles

encode secreted proteins of 147 amino acids that differ in two

residues which determine recognition; only the isoform AVR3aKI

is recognized by the potato resistance protein R3a, whereas

AVR3aEM evades detection by R3a. When expressed in Nicotiana

benthamiana cells, AVR3a suppresses host cell death induced by the

elicitin INF1, a typical MAMP [35,37]. It has since been shown to

suppress cell death elicited by perception of a range of pathogen

molecules by direct interaction with, and stabilization of, the plant

E3 ligase CMPG1 [36,42]. The Avrblb2 gene family is highly

polymorphic and different forms/alleles are present in different P.

infestans isolates. Sequence alignment of the deduced amino acid

sequences of the Avrblb2 family members showed that the C-

terminal effector domain undergoes positive selection, which is

strong evidence for co-evolution with host resistance and/or target

proteins [44]. The amino acid residue at position 69 was shown to

be crucial for recognition by the cognate resistance protein Rpi-

blb2 [44]. AVRblb2 was shown to block the secretion of a C14

cysteine protease that is involved in plant resistance against P.

infestans [38]. Recently, the RXLR effector PITG_03192 has been

shown to enhance P. infestans colonization of N. benthamiana by its

interaction with NAC DNA binding proteins at the host

endoplasmic reticulum, preventing their re-localization into the

nucleus following pathogen perception [43]. Suppression of MTI

has also been reported for ATR1 and ATR13 in Arabidopsis [47].

Nevertheless, for the majority of RXLR effectors, their biological

functions and potential host targets are unknown.

Transient expression in protoplasts has proven fast and reliable

for studying the function of bacterial type III effectors that

suppress early MAMP signaling [48,49]. Moreover, the assay

allows the measurement of synchronized responses and it does not

require the use of bacteria for protein or DNA transfer into the

host cell. In addition, the protoplast system offers the possibility to

test large sets of effectors in a medium-high throughput manner. In

this study, we have used tomato mesophyll protoplasts to screen a

library of 33 P. infestans RXLR effector candidates (PiRXLRs) for

their ability to suppress flg22-triggered defense signaling. Our

additional aim was to test whether PiRXLRs that suppress early

MTI signaling in the host plant tomato retain that ability in the

distantly-related non-host plant Arabidopsis. For the experimental

read-out we measured the abilities of these effectors to suppress: i)

flg22-induced promoterFLG22-INDUCED RECEPTOR-LIKE KI-

NASE 1 - LUCIFERASE (pFRK1-Luc) reporter gene activity; ii)

flg22-induced post-translational MAP kinase activation; and iii)

flg22-induced gene expression. In addition, we performed sub-

cellular localization studies of fluorescent protein-tagged PiRXLR

effectors by confocal microscopy. Finally, we tested the potential of

the PiRXLR effectors suppressing early MTI signaling to enhance

N. benthamiana susceptibility to P. infestans. Unraveling the mode-of-

action of PiRXLR effectors within plant cells will help to gain

insight into the specific mechanisms that coordinate different

signaling and metabolic pathways to ensure proper plant

development and response to environmental changes or stresses.

Results

A subset of RXLR effectors from P. infestans suppresses
flg22-inducible reporter gene activation in both tomato
and Arabidopsis

A prerequisite to performing a screen that would allow us to

identify PiRXLR effector candidates suppressing early events of

Author Summary

Phytophthora species are among the most devastating
crop pathogens worldwide. P. infestans is a pathogen of
tomato and potato plants. The genome of P. infestans has
been sequenced, revealing the presence of a large number
of host-targeting RXLR effector proteins that are thought
to manipulate cellular activities to the benefit of the
pathogen. One step toward disease management com-
prises understanding the molecular basis of host suscep-
tibility. In this paper, we used a protoplast-based system to
analyze a subset of P. infestans RXLR (PiRXLR) effectors that
interfere with plant immunity initiated by the recognition
of microbial patterns (MAMP-triggered immunity - MTI).
We identified PiRXLR effectors that suppress different
stages early in the signaling cascade leading to MTI in
tomato. By conducting a comparative functional analysis,
we found that some of these effectors attenuate early MTI
signaling in Arabidopsis, a plant that is not colonized by P.
infestans. The PiRXLR effectors localize to different sub-
cellular compartments, consistent with their ability to
suppress different steps of the MTI signaling pathway. We
conclude that the effector complement of P. infestans
contains functional redundancy in the context of sup-
pressing early signal transduction and gene activation
associated with plant immunity.

RXLR Effectors Suppressing MAMP-Induced Immunity
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MAMP signaling pathways in both a host (tomato) and a non-host

(Arabidopsis) of P. infestans was to develop comparative bio-assays.

Several components of the flg22-triggered signaling pathway are

conserved in Arabidopsis and tomato. SlFLS2, the ortholog of

AtFLS2, binds flg22 [50]. The MAP kinase orthologs of AtMPK3

and 6 in tomato are SlMPK3 and 1, respectively [51].

We adapted most of the techniques and materials that were

generated for the identification and functional characterization of

the P. syringae type III effector AvrPto, a well-studied suppressor of

early MAMP signaling in both Arabidopsis [48,49] and tomato

[52]. Figure S1 shows that we could reproduce the AvrPto-

mediated suppression of early MTI signaling observed in

Arabidopsis protoplasts [48]. Moreover, we were able to extend

this assay to tomato, and the induction of luciferase activity under

control of the flg22-responsive promoter of FRK1 (pFRK1-Luc) was

strongly impaired in Arabidopsis and tomato protoplasts express-

ing AvrPto with a C-terminal Green Fluorescent Protein (GFP)

fusion (Figure S1A, B). An inactive AvrPto in which the Gly

residue in position 2 is replaced by an Ala (AvrPto G2A-GFP),

preventing the myristoylation and membrane localization of the

effector protein [53], could not suppress pFRK1-Luc activation by

flg22 (Figure S1A, B). Furthermore, we confirmed that AvrPto-

GFP but not the AvrPto G2A-GFP mutant blocks post-transla-

tional activation of flg22-responsive MAP kinases in both

protoplast systems (Figure S1 C, D).

We searched for PiRXLR effectors interfering with flg22-

induced early immune responses in protoplasts of tomato, a host

for P. infestans. Thirty-three PiRXLR effector genes, most of which

were selected on the basis of their up-regulation during the

biotrophic phase of infection [28,32,44], were cloned without the

native secretion signal peptide into pDONR Gateway vectors

(Table S1). We sub-cloned these sequences into Gateway

destination vectors of the p2GW7 series to allow transient

expression with/without an N-terminally fused GFP tag.

For the initial read-out, we measured pFRK1-Luc activity upon

flg22 treatment. Of the 33 PiRXLR effectors screened, 8

(PITG_04097, PITG_04145, PITG_06087, PITG_09585,

PITG_13628, PITG_13959, PITG_18215 and PITG_20303)

reduced consistently and reproducibly flg22-induced pFRK1-Luc

activation in tomato protoplasts, when compared to control

protoplasts expressing only GFP (p-value,0.05 - Figure 1:

S.lycopersicum). We named these effectors Suppressor of early

Flg22-induced Immune response (SFI) 1 to 8, respectively.

Protoplast staining with vital dyes, 24 h after plasmid transforma-

tion, showed that the percentage of dead cells is, with the

exception of a higher (but non-significant) value for SFI6, similar

for each of the tested PiRXLR effectors and the GFP control

(Figure S2). Therefore, the suppression of reporter gene activity is

not the consequence of a toxic or a programmed cell death process

in transformed protoplasts.

Five PiRXLR effectors (SFI1 and SFI5-8) reduced pFRK1-Luc

activation by flg22 with an efficiency comparable to the bacterial

effector AvrPto (+flg22/2flg22>1). Among PiRXLR effectors

with a reported avirulence function in potato, only AVRblb2

(SFI8) [44] was able to suppress flg22-induced pFRK1-Luc activity.

SFI8 is a representative member of a large family of AVRblb2-

related proteins but it bears a Phe residue at position 69 in its

sequence and, therefore, is predicted not to be recognized by Rpi-

blb2 [44]. Thus, we extended our analysis to three more AVRblb2

family members with either an Ala (PITG_20300 and

PITG_04090) or Ile (PITG_04085) at position 69 and crucial

for Rpi-blb2-mediated HR (Table S2). Both predicted Rpi-blb2-

recognized and -unrecognized isoforms of AVRblb2 equally

suppressed reporter gene activation (Figure S3A). Other PiRXLR

effectors identified as avirulence proteins such as AVR1 [28],

AVR3a [34], AVR4 [54] and AVRblb1/IPI-O1 or IPI-O4

[55,56] did not interfere with early flg22-induced responses in

our assay (Figure 1: S. lycopersicum). In the case of AVR3a, both

R3a-recognized AVR3aKI and R3a-unrecognized AVR3aEM had

no effect on flg22-induced pFRK1-Luc activity (Figure 1: S.lyco-

persicum).

Using quantitative real-time PCR (qRT-PCR) we monitored

the expression levels of the eight PiRXLR effector genes that

suppressed pFRK1-Luc activation in tomato protoplasts at different

stages of potato infection, relative to their expression in sporangia.

Previous expression analyses of P. infestans RXLR effector genes

showed that, when detected by either qRT-PCR [24] or in

microarray experiments [28,57], they are up-regulated in the first

48–72 hours of infection, i.e. during biotrophy. Transcripts of

SFI1-8 accumulated during the first 48 hours post-inoculation

(Figure S4), consistent with a potential role in effector-triggered

susceptibility.

We extended our analyses to determine whether PiRXLR

effectors that suppress pFRK1-Luc activity in the host tomato are

able to also suppress such responses in the non-host plant

Arabidopsis.

The pFRK1-Luc reporter gene assay, which turned out to be more

sensitive in Arabidopsis than in tomato, showed that four effectors

(SFI1, SFI2, SFI5 and SFI8/AVRblb2) were also able to attenuate

activation in Arabidopsis (p-value,0.05 - Figure 1: A. thaliana). As

observed in tomato, each tested AVRblb2 isoform suppressed

reporter gene activation by flg22 in Arabidopsis protoplasts (Figure

S3B), whereas AVR3a had no effect (Figure 1: A. thaliana). We found

a further four effectors (PITG_00821, PITG_05750, PITG_16737

and AVRblb1/PITG_21388) that attenuated the flg22-dependent

pFRK1-Luc activation only in Arabidopsis (p-value,0.05 - Figure 1:

A. thaliana). Like in tomato, transient expression of PiRXLR

effectors in Arabidopsis protoplasts did not cause significant cell

death (Figure S5). One effector, PITG_18670, significantly induced

a stronger flg22-dependent pFRK1-Luc activity than did the GFP

control (p-value,0.05 – Figure 1: A. thaliana), but did not do so in

the host plant tomato (Figure 1: S. lycopersicum). This effector was not

pursued further in this work.

The observation that 4 PiRXLR effectors suppress flg22-

mediated pFRK1-Luc induction in the non-host plant Arabidopsis,

but not in the host plant tomato, was unexpected. This prompted

us to test whether all 8 PiRXLR effectors that suppress pFRK1-Luc

induction in Arabidopsis also inhibit the endogenous expression of

early MAMP-regulated genes. First, we measured the level of

endogenous FRK1 in Arabidopsis following flg22 treatment. This

experiment confirmed the data obtained in the reporter gene assay

with 3 PiRXLR effectors (SFI1, SFI2 and SFI8/AVRblb2)

attenuating the up-regulation of FRK1 expression by flg22

(Figure 2A). In contrast, SFI5, as well as PITG_00821,

PITG_05750, PITG_16737 and AVRblb1/PITG_21388, failed

to suppress flg22-induced FRK1 expression (Figure 2A). We

extended our analysis to an additional MAMP-induced gene,

WRKY DNA-BINDING PROTEIN 17 (WRKY17), and observed that

its up-regulation was also notably diminished by SFI1, SFI2 and

SFI8/AVRblb2 (Figure 2B), whereas SFI5, PITG_00821,

PITG_05750, PITG_16737 and AVRblb1/PITG_21388 again

had no effect. The expression of the housekeeping gene

ELONGATION FACTOR 1A (EF1a) was generally not altered.

Only with SFI2 did we observe a 2–3 fold decrease of the EF1a
transcript level, possibly as a consequence of reduced cellular

fitness due to effector expression (Figure 2C). Indeed, the

expression of all genes tested was barely detectable in the presence

of this effector.

RXLR Effectors Suppressing MAMP-Induced Immunity
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Together, our initial results revealed a set of 8 PiRXLR effectors

that are candidate suppressors of early flg22-mediated MTI

signaling in tomato, and assigned a novel function to the

previously described AVRblb2 effector family. Moreover, our

data predict that 3 of these PiRXLR effectors target processes

contributing to MTI that are conserved in Arabidopsis and

tomato. We proceeded to study all 8 effectors that suppress flg22-

inducible reporter gene activation in tomato in more detail.

PiRXLR effectors suppressing flg22-inducible reporter
gene activation display similar sub-cellular localizations
in tomato and Arabidopsis protoplasts and in N.
benthamiana leaves

From the initial screen for MTI signaling suppression we

hypothesized that the function of 3 PiRXLR effectors (SFI1, SFI2

and SFI8/AVRblb2) may be conserved in both tomato and

Arabidopsis while 5 effectors (SFI3, SFI4, SFI5, SFI6 and SFI7) may

function specifically in tomato. We expected that the sub-cellular

distribution of PiRXLR effectors might provide additional impor-

tant information about their function in the cell. Therefore, these

PiRXLR effectors, N-terminally fused to GFP, were transiently

expressed in tomato (all SFI effectors) and Arabidopsis (only SFI1,

SFI2 and SFI8/AVRblb2) protoplasts, and in N. benthamiana leaves

for comparison, and visualized by confocal microscopy (Figure 3).

We performed immunoblot analysis to confirm protein expression

and stability of intact GFP-fusion proteins (Figure S6), and verified

that GFP-tagged PiRXLR effectors were still functional and

effectively suppressed pFRK1-Luc activity in protoplasts (Figure

S7). Most of the GFP-tagged PiRXLR effectors were as active as the

un-tagged proteins. Notably, GFP-SFI8/AVRblb2 functioned only

weakly or not at all in Arabidopsis, but retained its function in

tomato (Figure S7). SFI8/AVRblb2, C-terminally fused to GFP

(SFI8-GFP) was also unable to suppress pFRK1-Luc activity in

Arabidopsis protoplasts (Figure S8).

Figure 1. Inhibition of MAMP-inducible reporter gene activation by PiRXLR effectors. Luciferase reporter gene activity in flg22-challenged
S. lycopersicum and A. thaliana protoplasts expressing PiRXLR effector genes. Mesophyll protoplasts were co-transfected with a p35S-effector
construct (or a p35S-GFP control vector) and the two reporter gene constructs pFRK1-Luc and pUBQ10-GUS. Reporter gene activity was assessed 3 or
6 h later for S. lycopersicum and A. thaliana, respectively. For each data set, flg22-induced luciferase activity was calculated relative to the untreated
sample and was normalized by the corresponding GUS activities in flg22 and untreated sample (pFRK1-Luc activity (+flg22/2flg22)). AvrPto was used
as a positive control for pFRK1-Luc activity suppression. Four independent biological experiments were carried out per effector. Within each
experiment three technical replicates were performed. Pooled data are presented as mean 6 SEM. Differences in luciferase/GUS activity between
control and effector gene-expressing protoplasts were determined using one-way ANOVA followed by Dunnett’s multiple comparison test. An
asterisk marks data sets with a p-value,0.05.
doi:10.1371/journal.ppat.1004057.g001

RXLR Effectors Suppressing MAMP-Induced Immunity
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The sub-cellular localizations of the 3 PiRXLR effectors (SFI1,

SFI2 and SFI8/AVRblb2) affecting pFRK1-Luc/MAMP gene

activation in both tomato and Arabidopsis are similar in each

plant species (Figure 3A). GFP-SFI8/AVRblb2 showed nuclear-

cytoplasmic localization whereas GFP-SFI1 and GFP-SFI2

localized predominantly in the nucleus, and were also apparent

in the nucleolus (Figure 3A). In the case of GFP-SFI1, additional

fluorescence signal was observed in the cytoplasm (and possibly at

the plasma membrane [PM]) (Figure 3A). The 5 PiRXLR effectors

(GFP-SFI3, -SFI4, -SFI5, -SFI6 and -SFI7) with a tomato-specific

effect showed different subcellular localizations. GFP-SFI3 was

enriched in the nucleus/nucleolus, GFP-SFI4 showed nuclear-

cytoplasmic localization, and GFP-SFI5, -SFI6 and -SFI7 showed

differing degrees of cytoplasmic localization and association with

the PM (Figure 3B), with GFP-SFI5 almost exclusively localized to

the PM.

Additional sub-cellular localization studies performed upon

Agrobacterium-mediated expression in N. benthamiana leaves

confirmed the results obtained in protoplasts, suggesting that

protoplasts are accurate in reflecting sub-cellular localizations of

these effectors in planta. Confocal microscopy revealed distinct sub-

nuclear localization patterns for the 3 PiRXLR effectors (GFP-

SFI1-3) that were predominant in this compartment. GFP-SFI1

appears to localize in the nucleolus, GFP-SFI3 forms a ring

around the nucleolus, whereas GFP-SFI2 showed a range of sub-

nuclear localizations (Figure S9). The obvious differences in sub-

cellular localization between effectors imply that different steps

Figure 2. Transcriptional profiling of MAMP-inducible genes in
A. thaliana protoplasts transfected with SFI effector constructs.
(A–C) Relative gene expression for the flg22-inducible genes FRK1 and
WRKY17 (A, B) and the housekeeping gene EF1a (C) was assessed by
quantitative real-time polymerase chain reaction (qRT-PCR) 0, 1 and 3 h
after protoplasts were exposed to flg22. Transcript levels of the
analyzed genes were normalized to the levels of the Actin transcript.
GFP was used as a negative and AvrPto as a positive control for
suppression of gene expression. One representative independent
experiment out of four is plotted. Data is presented as mean 6 SEM
from three technical replicates.
doi:10.1371/journal.ppat.1004057.g002

Figure 3. Sub-cellular localization of N-terminally GFP-tagged
SFI effectors in S. lycopersicum and A. thaliana protoplasts and in
N. benthamiana leaves. (A, B) Mesophyll protoplasts and N.
benthamiana leaves were monitored using confocal microscopy 12 h
and 48 h after transfection with a p35S-GFP-effector construct,
respectively. Representative optical sections of bright field and merged
GFP (in green) and chloroplast (in blue) fluorescence images are shown
for protoplasts as indicated.
doi:10.1371/journal.ppat.1004057.g003
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and/or pathways may be targeted by individual effectors that have

in common the suppression of flg22-triggered pFRK1-Luc activity.

SFI5, SFI6 and SFI7 suppress flg22-induced post-
translational MAP kinase activation in tomato but not in
Arabidopsis

We performed an epistatic analysis to find out which step of the

flg22-triggered signaling pathway in tomato or Arabidopsis is

affected by the PiRXLR effectors that suppressed pFRK1-Luc/

MAMP responsive gene activation. We conducted immunoblot

assays using the p44/42 antibody, raised against phosphorylated

MAP kinases, to assess the impact of our effectors on the activation

by flg22 of endogenous SlMPK1/3 and AtMPK3/6 in tomato and

Arabidopsis protoplasts, respectively. AvrPto was used as a positive

control, as it is known to block MTI signaling upstream of the MAP

kinase cascade at the FLS2/BAK1 receptor complex [23,24,48].

In tomato, 3 effectors (SFI5-SFI7) consistently suppressed flg22-

dependent post-translational MAP kinase activation (Figure 4A).

We confirmed this result by performing transient expression of

HA-tagged SlMPK1 and SlMPK3 in protoplasts followed by

immunoprecipitation and in vitro MAP kinase assay (Figure 4B). In

contrast, none of the 8 SFI effectors attenuated flg22-dependent

post-translational MAP kinase activation in Arabidopsis

(Figure 4C). This suggests that the effectors (SFI1, SFI2 and

SFI8/AVRblb2) that were shown to attenuate flg22-induced gene

activation in both tomato and Arabidopsis are most likely doing so

downstream of MAP kinase activation. In the case of SFI5, the

demonstration that it attenuates MAP kinase activation only in

tomato (Figure 4A, 4C) is consistent with the observation that,

although this effector suppressed pFRK1-Luc activation in Arabi-

dopsis, it failed to suppress flg22-mediated up-regulation of

endogenous FRK1 in that plant.

SFI5 and SFI6 specifically suppress flg22-induced MAP
kinase signaling, whereas SFI7 also partially attenuates
INF1-triggered cell death

To further elucidate the molecular mechanism(s) underlying the

mode of action of SFI5-SFI7 in suppressing flg22-induced post-

translational MAP kinase activation in tomato, we performed

gain-of-function experiments using components that activate the

MAP kinases SlMPK1 and SlMPK3 in the absence of flg22 signal.

The ectopic expression of known key players of MAMP-signaling

pathways, such as MAPK kinases and MAPKK kinases [48,58]

have helped to elucidate the steps at which bacterial effectors such

as AvrPto interfere with MTI in Arabidopsis [48,59].

In tomato and other solanaceous plants, MAP kinase signaling

cascades are best studied in the context of programmed cell death

(PCD) associated with effector-triggered immunity [51,60,61]. In N.

benthamiana, PCD triggered by perception of the P. infestans MAMP

INF1 requires NbMKK1 and its interaction with SIPK (salicylic

acid-induced protein kinase; an ortholog of SlMPK1) [62]. The role

of MAPKK kinases in tomato immunity is only documented for

SlMAP3Ka and SlMAP3Ke [60,61] and the best characterized

MAPK kinases are SlMEK1 and SlMEK2 [60]. Whether these

kinases contribute to flg22-triggered signaling in tomato is

unknown. As shown in Figure S10, transient expression in tomato

protoplasts of a constitutively active SlMEK2 (SlMEK2-DD), or the

kinase domain of SlMAP3Ka (SlMAP3Ka-KD), led to post-

translational activation of SlMPK1 and SlMPK3 in the absence

of flg22. The constitutively active SlMEK1 (SlMEK1-DD) and

kinase domain of SlMAP3Ke (SlMAP3Ke-KD) did not activate

SlMPK1 and SlMPK3. The expression of the constitutively active

SlMEK2 (SlMEK2-DD) and the kinase domain of SlMAP3Ka

(SlMAP3Ka-KD) overrode the suppression of flg22-dependent

activation of SlMPK1 and SlMPK3 by SFI5-SFI7 (Figure 5A, 5B).

These results indicate that the three effectors suppress the signaling

cascade very early; either upstream of MAPKK kinase activation, or

specifically at the MAPK- and/or MAPKK kinase(s) involved in

flg22 signaling. This is consistent with association of these effectors

with the plant plasma membrane, where they may interfere with the

earliest components of MAMP perception or signal transduction.

Since in N. benthamiana PCD triggered by perception of the

MAMP INF1 [62], or perception of Cladosporium fulvum effectors

Avr4/9 by tomato Cf-4/9 receptors [60,61], involves MAP kinase

cascades, we tested whether SFI5-SFI7 were able to suppress either

PCD event. In contrast to AVR3a, which is known to suppress PCD

triggered by INF1 or by co-expression of Cf-4/Avr4 ([42]); Figure 6a,

6b – p-value,0.01), GFP-SFI5 and GFP-SFI6 did not attenuate

PCD triggered by either recognition event (Figure 6A, 6B). However,

whereas GFP-SFI7 also failed to suppress Cf-4/Avr4-mediated PCD

(Figure 6B), this effector significantly attenuated INF1-mediated

PCD, albeit less efficiently than AVR3a (Figure 6B – p-value,0.01).

Our results indicate that SFI5 and SFI6 display functional specificity

by targeting the flg22/FLS2 MAP kinase cascade, but not

suppressing MAP kinase cascades leading to Cf-4- or INF1-mediated

PCD, whereas SFI7 has a broader suppressive effect which includes

INF1- but not Cf-4-mediated PCD.

PiRXLR effectors suppressing early MTI signaling
contribute to P. infestans virulence

The 8 PiRXLR effectors suppressing early MTI signaling in

tomato are assumed to contribute significantly to the virulence of

P. infestans. N. benthamiana was further used to explore the role of

the 8 selected PiRXLR effectors in host colonization. Agrobacterium

tumefaciens strains containing the PiRXLR effector construct were

infiltrated into leaves of 2–3 week-old N. benthamiana plants. Leaves

were challenged with P. infestans 1 day after agro-infiltration and

lesion size (Figure 7A), as well as disease symptoms (Figure 7B),

were recorded after an additional 7 days. Except SFI2, whose

overexpression in N. benthamiana leaves caused cell death that

interfered with the pathogen assay, we found that the remaining 7

PiRXLR effectors enhanced colonization of N. benthamiana by P.

infestans (Figure 7A, 7B). Compared to the empty vector control,

the expression of the PiRXLR effectors caused a two- to five-fold

increase of the lesion size (p,0.001) due to enhanced P. infestans

colonisation. The strongest effect was observed when expressing

GFP-SFI1. Interestingly, this is one of the effectors that localizes

predominantly to the nucleus/nucleolus and suppresses flg22-

mediated induction of MTI response genes in both Arabidopsis

and tomato, but does not suppress MAP kinase activation,

suggesting that it may act downstream of this step. We were thus

prompted to look further at the significance of the nuclear/

nucleolar localization of SFI1 on its virulence function.

The nuclear localization of SFI1 is required for
suppression of MTI signaling in Arabidopsis, and for
enhancing P. infestans colonization of N. benthamiana

We attempted to address the importance of the nuclear

localization for the function of SFI1 and hypothesized that mis-

targeting of the effector away from the nucleus could impact its

virulence function. We generated a construct introducing a

myristoylation site at the N-terminus of GFP-SFI1. Transient

expression of myr-GFP-SFI1 in planta showed that the myristoyla-

tion site was functional in targeting SFI1 to the plasma membrane

in Arabidopsis protoplasts (Figure 8A) and N. benthamiana leaves

(Figure 8B). Both GFP-SFI1 and myr-GFP-SFI1 fusion proteins
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were stable and intact in planta (Figure 8F). Strikingly, whereas the

flg22-dependent induction of pFRK1-Luc activity was suppressed

by GFP-SFI1 in Arabidopsis protoplasts, no such suppression was

observed in the presence of myr-GFP-SFI1 (p-value,0.05 -

Figure 8C). Notably, myr-GFP-SFI1 lost its ability to enhance P.

infestans colonization of N. benthamiana (Figure 8D, 8E), providing

strong evidence that suppression of MAMP-induced immune

responses by this effector in both host and non-host plants requires

its localization to the nucleus/nucleolus.

Discussion

In this study, we used a protoplast-based system to assess the

potential for RXLR effectors from P. infestans (PiRXLRs) to

Figure 4. MAP kinase activation upon flg22 treatment in protoplasts expressing SFI effector genes. (A, C) Immunoblotting of
phosphorylated MAP kinase in p35S-effector-transfected S. lycopersicum (A) and A. thaliana (C) protoplast samples collected 0, 15 and 30 min after
flg22 treatment. Antibody raised against activated MAP kinase p44/p42 was used for detection. The experiments are representative of at least two
repeats. Ponceau S staining served as a loading control. (B) MAP kinase in vitro kinase assay in S. lycopersicum protoplasts. GFP, AvrPto, SFI5, SFI6 or
SFI7 were co-expressed with hemagglutinin (HA)-tagged tomato MAP kinase SlMPK1 or SlMPK3. HA-tagged MAP kinase were immunoprecipitated
with anti-HA antibody for an in vitro kinase assay with [c-32P] ATP and myelin basic protein (MBP) as phosphorylation substrate. The lower panel
presents an immunoblot with anti-HA antibody showing the expression of HA-tagged proteins. The upper panel shows an autoradiography
visualizing MBP phosphorylation (MBP 32P) in the presence of immunoprecipitated MAP kinase. The experiment was repeated twice with similar
results.
doi:10.1371/journal.ppat.1004057.g004

Figure 5. Epistatic analysis of MAP kinase activation upon flg22 treatment in S. lycopersicum protoplasts expressing SFI effector
genes. Immunoblotting of phosphorylated MAP kinase in p35S-effector- and p35S-SlMEK2-DD-GFP- (A) and in p35S-effector- and p35S-SlMAP3Ka-KD-
GFP- (B) co-transfected S. lycopersicum protoplast samples collected 0, 15 and 30 min after flg22 treatment. Antibody raised against activated MAP
kinase p44/p42 was used for detection. The experiments are representative of at least two repeats. Ponceau S staining served as a loading control.
doi:10.1371/journal.ppat.1004057.g005
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manipulate MAMP-triggered early signaling in both a host and

non-host plant species. Of 33 PiRXLR effector candidates,

selected on the basis of up-regulation during the biotrophic phase

of late blight infection, 8 (SFI1-SFI8) were able to suppress flg22-

mediated induction of pFRK1-Luc activity in protoplasts of the host

plant tomato (summarized in Table 1). Of these, three (SFI5-SFI7)

were shown to suppress flg22-dependent MAP kinase activation at

- or upstream of - the step of MAPK- and/or MAPKK kinase

activation, indicating that they target the earliest stages of MTI

signal transduction in tomato (Table 1). As P. infestans does not

possess flagellin, the ability of these effectors to attenuate flg22-

mediated MAP kinase activation and early defense gene expres-

sion indicates that these events are likely stimulated following

perception of as yet undefined oomycete MAMPs. We confirmed

that 7 of the 8 PiXRLR effectors that suppress early MTI signaling

in tomato also enhance colonization by P. infestans in the host plant

N. benthamiana (Table 1).

We found that 3 PiRXLR effectors (SFI1, SFI2 and SFI8/

AVRblb2) suppress flg22-mediated induction of pFRK1-Luc

activity in protoplasts of both the host plant tomato and the

non-host plant Arabidopsis. We confirmed that suppression by all

3 effectors attenuates transcriptional activation of endogenous

MAMP-induced marker genes in Arabidopsis (Table 1), indicating

that some effectors may function efficiently across diverse (host and

non-host) plant species. Interestingly, we found another set of 4

PiRXLR effectors that suppressed pFRK1-Luc activation only in

the non-host Arabidopsis. This was a surprise, albeit the assay is

potentially less sensitive in the host plant tomato. However, none

of these effectors were able to prevent the activation of endogenous

(Arabidopsis) MAMP-induced marker genes (Table 1). Therefore,

additional experiments are necessary to determine to what extent

suppression of flg22-induced post-transcriptional or translational

processes may account for the activity of these effectors on the

pFRK1-Luc reporter system in this plant.

While 3 PiRXLR effectors (SFI5-SFI7) suppressed MAMP-

dependent MAP kinase activation in tomato, no PiRXLR effector

had a similar effect in Arabidopsis (Table 1). This is an important

finding, consistent with the hypothesis of Schulze-Lefert and

Panstruga [63] that non-host resistance in plants (in this case

Arabidopsis), which are distantly related to the host of P. infestans, is

likely to include failures in effector-triggered susceptibility, due to

effectors that are not sufficiently adapted to adequately manipulate

plant immunity. Each of these observations will be discussed

below.

The large number of RXLR effector gene candidates in

Phytophthora genomes complicates their functional analysis by

reverse and forward genetics. Thus, the development of a

medium/high- throughput system to explore their function in

plants is strongly desired. Other large-scale effector functional

screens have been conducted recently. A study by Fabro et al. [64]

identified 39 out of 64 RXLR effectors from Hyaloperonospora

arabidopsidis that enhance P. syringae growth in Arabidopsis Col-0

when delivered via the type III secretion system (T3SS). A

majority of these effectors was additionally able to suppress callose

deposition in response to bacterial MAMP perception. Thirteen of

the H. arabidopsidis RXLR effectors promoted bacterial growth in

turnip (Brassica rapa), a member of the Brassicaceae that is a non-host

of H. arabidopsidis, indicating that they likely retain their virulence

function in this closely related plant. Although the authors did not

provide molecular evidence of the influence of these RXLR

effectors on MTI in turnip, their results are in line with our

conclusions, in that the activity of some RXLR effectors is not

restricted to the pathogen’s host(s). Nevertheless, a number of H.

arabidopsidis RXLR effectors that promoted P. syringae growth in

Arabidopsis either failed to do so (44 effectors) in turnip, suggesting

that they fail to function in the non-host plant, or reduced P.

syringae growth (7 effectors), suggesting that they had activated

ETI. Whereas we have identified a set of PiRXLRs that suppress

early MTI signaling in tomato but not in Arabidopsis protoplasts,

none of the tested PiRXLRs in our study significantly promoted

cell death in Arabidopsis protoplasts. In apparent contradiction to

the molecular evolutionary concept of non-host resistance [63] we

have also identified three PiRXLR effectors that potentially

Figure 6. Effect of GFP-SFI5, GFP-SFI6 and GFP-SFI7 on PCD
triggered by INF1 or by co-expression of Cf-4 with Cladospo-
rium fulvum Avr4. (A) Percentage of inoculation sites showing
confluent cell death at 7 days post-infiltration of Agrobacterium strains
expressing each GFP-effector fusion protein with a strain expressing Cf-
4 and Avr4. (B) Percentage of inoculation sites showing confluent cell
death at 7 days post-infiltration of Agrobacterium strains expressing
each GFP-effector fusion protein with a strain expressing INF1. Results
in (A) and (B) represent five biological replicates, each involving 18
inoculation sites. Error bars represent SEM. * represents statistical
significance (p,0.01) using one-way ANOVA.
doi:10.1371/journal.ppat.1004057.g006
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Figure 7. Effect of transient expression of SFI effectors enhances P. infestans colonization of N. benthamiana. Mean lesion diameter (A)
and typical disease development symptoms (B) are shown for P. infestans 7 days post-inoculation over sites on leaves where an effector construct or
empty vector was agro-infiltrated 1 day earlier. Each effector was expressed as an N-terminal GFP fusion protein as indicated, except for SFI8. Error
bars represent SEM, and significant difference (* = p,0.001) in lesion size compared to empty vector control was determined by one-way ANOVA.
Three biological replicates were performed, each using 24 inoculation sites per construct.
doi:10.1371/journal.ppat.1004057.g007
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attenuate early flg22-mediated MTI signaling events in Arabi-

dopsis. In order to demonstrate whether failure to suppress MTI

has the potential to contribute to non-host resistance to P. infestans

in Arabidopsis, it would be necessary to extend the analysis to all

PiRXLR effectors and provide an in-depth study of their precise

function in both host and non-host plant.

Our primary goal was to identify and ascribe functions to

PiRXLR effector proteins that interfere with early plant defense

responses. Interestingly, AVRblb2 family members (such as SFI8),

but not AVR3a, were among effectors suppressing flg22-induced

pFRK1-Luc activity. This apparently contrasts with the results

obtained from the screen for suppression of cell death mediated by

the MAMP INF1 in N. benthamiana, in which AVR3a but not

AVRblb2 family members acted as a suppressor [35,37,44].

Similarly, PITG_14736/PexRD8 also suppressed INF1-mediated

PCD [44] whilst failing to attenuate flg22-mediated responses in this

study, and SFI5/PexRD27 suppressed flg22-mediated MAP kinase

activation here, whilst failing to suppress INF1-mediated PCD ([44];

Figure 6). Possible explanations would be that AVR3a and PexRD8

disable components located downstream of the MAMP signal

transduction and early transcriptional changes studied here, or that

these effectors act specifically on alternative signal transduction

events related to INF1-mediated cell death, but not the FLS2/flg22

pathway. The opposite may be true for SFI8/AVRblb2 and SFI5.

Moreover, SFI7 suppresses flg22/FLS2-mediated signal transduc-

tion and attenuates INF1-mediated PCD, but not Cf-4-mediated

PCD, whereas AVR3a attenuates both INF1-mediated and Cf-4-

mediated PCD. Evidence is thus emerging of effectors with

overlapping functions, at the phenotypic level, that are likely

mediated by distinct modes of action at the mechanistic level.

The epistatic analysis of the MAP kinase signaling cascade

showed that SFI5-SFI7 presumably act upstream of the activation

Figure 8. Importance of the nuclear localization of SFI1 for suppression of flg22-triggered pFRK1-Luc expression in A. thaliana and
for P. infestans colonization in N. benthamiana. (A) Confocal microscopy of A. thaliana protoplasts expressing GFP-SFI1 or myr-GFP-SFI1 12 h
after transfection. Representative optical sections of bright field and merged GFP (in green) and chloroplast (in blue) fluorescence images are shown.
(B) Representative confocal microscope images of N. benthamiana cells expressing GFP-SFI1 and myr-GFP-SFI1 (left panels, in green) with the
nucleolar marker RFP-fibrillarin (right panels, in red); the merged images are shown in the central panels. (C) Measurement of pFRK1-Luc reporter
activity in A. thaliana protoplasts 6 h after flg22 treatment in the presence of GFP (control), AvrPto, GFP-SFI1 or myr-GFP-SFI1. Pooled data from four
experiments are presented as mean 6 SEM. Significant differences (p,0.05) in luciferase activity (denoted *) were determined using one-way ANOVA
followed by Dunnett’s multiple comparison test. (D, E) Effect of transient expression of GFP-SFI1 and myr-GFP-SFI1 on P. infestans colonization of N.
benthamiana. Mean lesion diameter (D) and typical disease symptoms (E) are shown for P. infestans 7 days post-inoculation over sites on leaves
where an effector construct was agro-infiltrated 1 day earlier. * represents statistical significance (p,0.001) using one-way ANOVA. (F) Immunoblot
using anti-GFP antibody showing that both GFP-SFI1 and myr-GFP-SFI1 are stable and intact fusion proteins (arrowed) in planta.
doi:10.1371/journal.ppat.1004057.g008
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of the SlMPK1/SIPK and SlMPK3/WIPK MAP kinases in

tomato protoplasts following flg22 perception. These effectors

potentially function at the FLS2 receptor complex, or upon

MAPKKK or MAPKK activity, or upon alternative regulators

associated with this signal transduction pathway. As P. infestans

does not possess flg22, and is thus unlikely to activate FLS2, the

activity of any effectors upon the receptor complex must involve

targets that are associated with bacterial and oomycete MAMP

detection. Nevertheless, the absence of any suppressive activity of

these effectors against CF4-mediated cell death and the modest

suppression of INF1-mediated PCD only by SFI7 – two defense

pathways that utilize alternative MAPKK kinases - imply

specificity in the signal transduction pathways targeted by these

effectors. It is important to note that all three effectors, to differing

degree, associate with the plasma membrane, consistent with a

potential action at the level of signal perception. Mukhtar et al.,

[65], postulated that an overlapping subset of host proteins, so-

called hubs, are targeted by oomycete (H. arabidopsidis) and

bacterial (P. syringae) effectors that have arisen independently

through convergent evolution. Therefore, future work will focus

on identification of host proteins with which SFI5-SFI7 interact to

better elucidate the molecular mechanisms underlying the action

of these effectors.

An effect of AVRblb2 on early MAMP signaling in solanaceous

plant species has not been reported before, but it is has been

shown that AVRblb2 affects plant immunity by inhibiting the

secretion of C14, an apoplastic papain-like cysteine protease [38].

It is worth noting that in that study, AVRblb2 was exclusively

localized at the plasma membrane, whereas in our experiments

SFI8/AVRblb2 appeared mainly in the nucleus and cytosol. Yet,

as AVRblb2 forms a large family and it is not clear which

AVRblb2 isoform was exactly tested for the inhibition of C14

secretion [38], any apparent discrepancies in our results raise the

possibility that different members of the AVRblb2 family have

distinct or multiple cellular activities. Nevertheless, in our study all

tested members of the AVRblb2 family were able to significantly

suppress flg22-mediated induction of pFRK1-Luc activity in

protoplasts of the host plant tomato.

As the effectors SFI1, SFI2 and SFI8/AVRblb2 interfere with

transcriptional up-regulation of MAMP-responsive genes in both

host and non-host plants, we presume that they target conserved

processes upstream of the earliest transcriptional responses. None

of these effectors prevented MAP kinase activation, suggesting that

they act downstream of such signal transduction. The nuclear

localization of SFI1 and SFI2 in Arabidopsis, tomato and N.

benthamiana may indicate that they directly manipulate regulatory

processes leading to transcriptional up-regulation. For SFI1 we

showed that its mislocalization to the plasma membrane, via

addition of a myristoylation signal, prevented both its ability to

suppress flg22-mediated MTI gene activation in Arabidopsis and

its ability to enhance P. infestans colonization of the host plant N.

benthamiana. This strongly implicates the nucleus as the site of

effector activity for SFI1. It also indicates the importance of

determining subcellular localization of effectors, as mis-targeting

them provides a strategy for investigating their virulence function.

The fact that SFI1 activity is apparently conserved in the non-host

plant Arabidopsis indicates that we may draw on the wealth of

genetic resources available in the model plant to further dissect the

functions of this effector. Future work will employ additional mis-

targeting approaches, for example nuclear export (NES) and

nuclear localization (NLS) signals, to better elucidate the potential

contributions of SFI1-SFI8 activities, either within or outside the

nucleus, to suppress early MTI signaling.

Three of the PiRXLR effectors, SFI5-SFI7, suppressed flg22-

mediated post-translational MAP kinase activation in tomato but

not in the non-host Arabidopsis. A further two effectors, SFI3 and

SFI4, were shown to suppress specifically pFRK1-Luc activation in

tomato, although we need to confirm their inhibitory effect on the

expression of endogenous MAMP-responsive genes. Nevertheless,

each enhanced P. infestans colonization when transiently expressed

in N. benthamiana, consistent with a role in MTI suppression.

Functional characterization of all these effectors is thus better

pursued in host plants within the Solanaceae. The availability of

genome sequences for potato [66], tomato [67] and N. benthamiana

[68], the genetic tractability of the diploid tomato [67], and the

range of functional analyses that can be performed in N.

Table 1. Summary of PiRXLR effectors with suppressing activity on MTI.

Flg22-induced

PiRXLR pFRK1-Luc activity
MAMP gene
expression MAP kinase activation

Sub-cellular
localization P. infestans growth

S. lycopersicum A. thaliana A. thaliana S. lycopersicum A. thaliana N. benthamiana N. benthamiana

SFI1 S S S No No nucleus/nucleolus E

SFI2 S S S No No nucleus/nucleolus n.d

SFI3 S No No No No nucleus/nucleolus E

SFI4 S No No No No cytoplasm/nucleus E

SFI5 S S No S No PM E

SFI6 S No No S No cytoplasm/PM E

SFI7 S No No S No cytoplasm/PM E

SFI8 S S S cytoplasm/nucleus E

PITG_00821 No S No n.d n.d n.d n.d

PITG_05750 No S No n.d n.d n.d n.d

PITG_16737 No S No n.d n.d n.d n.d

PITG_21388 No S No n.d n.d n.d n.d

S: Suppression No: No suppression E: Enhanced n.d.: not determined.
doi:10.1371/journal.ppat.1004057.t001
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benthamiana [52], considerably broaden opportunities to do this.

Moreover, the adaptation of the Arabidopsis protoplast-based

system [48,49,58] to investigate the earliest stages of MTI in

tomato, presented here, further enhances capabilities to study the

functions of effectors from pathogens that infect solanaceous hosts.

Future work will employ transgenic host and nonhost plants

expressing the effectors revealed here, and additional RXLR

effectors from P. infestans, to more specifically investigate their

precise mechanistic action. Such studies will also reveal those

effectors which may act downstream of the earliest signaling events

in order to suppress MAMP-triggered immunity.

Ectopic expression in N. benthamiana of 7 of the 8 SFI effectors

selected through the protoplast-based screen enhanced plant

susceptibility toward P. infestans infection. This result suggests that

the suppression of early signaling events triggering basal immunity

is an important step toward successful host colonization by this

pathogen. P. infestans itself offers the possibility to further study

functional aspects of PiRXLR effectors, and gain- and loss-of

function experiments may confirm the importance of our

candidate effectors for virulence. However, it should be noted

that the functional redundancy of the PiRXLR effectors studied

here in suppressing early FLS2/flg22 MTI signaling suggests that

silencing of these effector genes in P. infestans may not lead to clear

virulence phenotypes, as has been shown by deletion studies with

type III effectors in P. syringae [69]. Nevertheless, silencing of single

PiRXLR effector genes Avr3a [36], or PITG_03192 [43] compro-

mised P. infestans pathogenicity, indicating that (at least some of)

the functions of these effectors are not redundant.

In conclusion, the tomato protoplast system provides a new

medium/high-throughput tool to identify effectors that modulate

the earliest stages of MTI signal transduction. We have identified 8

PiRXLR effectors that suppress early flg22-mediated MTI in

tomato. Three of these reveal association with the plant plasma

membrane and act at, or upstream of, MAPKK activation

specifically related to flg22-mediated MTI signal transduction.

Two of these effectors, SFI5 and SFI6, apparently do not act on

other MAP kinase-mediated signal transduction events studied in

this investigation. In addition, five of the effectors act downstream

of the MAP kinase cascade, 3 of which also clearly suppress early

flg22-mediated gene induction in Arabidopsis. This demonstrates

that the effector complement of P. infestans contains functional

redundancy in the context of suppressing early MTI signal

transduction and gene activation. It remains to be established why

such functional redundancy is necessary, or is selected for, and it is

consistent with studies of bacteria such as P. syringae [69] that plant

pathogens evolve multiple means of confounding the host immune

system.

Materials and Methods

Plant growth conditions
Solanum lycopersicum cv. Moneymaker was kept in a greenhouse

under controlled growth conditions: 16 h light at 24uC/8 h dark

at 22uC, 40%–45% humidity, ,200 mE m22 s21 light intensity.

They were grown on soil containing a 4.6:4.6:1 mixture of type P

soil, type T soil (Patzer, Germany) and sand. Leaves from 3 to 4

week-old plants were used for experiments.

Arabidopsis thaliana plants of the Col-0 ecotype were cultivated in

a phytochamber under stable climate conditions: 8 h light at 22–

24uC/16 h dark at 20uC, 40%–60% humidity, ,120 mE m22 s21

light intensity. They were grown on soil composed of a 3.5:1

mixture of GS/90 (Patzer, Germany) and vermiculite. Leaves from

4 to 5 week-old plants were used for protoplast preparation.

Nicotiana benthamiana was grown as described previously [36].

Phytophthora infestans RXLR effector cloning
Phytophthora infestans putative RXLR effector genes (PiRXLR)

were amplified minus the signal peptide from gDNA of the

sequenced isolate T30-4 in a two-step nested PCR reaction in

order to add flanking attB sites to the RXLR coding sequence.

The cloning primers are shown in Table S1 and Table S2. The

PCR products were recombined into pDONR201 or pDONR221

vectors (Invitrogen) to generate entry clones, which were further

recombined into the vectors p2GW7, p2FGW7 (N-terminal GFP

fusion), pB7WGF2 (N-terminal GFP fusion), p2GWF7 (C-terminal

GFP fusion) or p2HAGW7 (N-terminal hemagglutinin-tag;

derived from p2GW7) (VIB, Ghent University, Belgium) using

the Gateway recombination cloning technology (Invitrogen). The

myristoylation signal sequence MGCSVSK was added to the

amino-termini of the GFP-PiRXLR fusions using PCR with

modifying primers and restriction cloning into pENTR1a (Invi-

trogen) before recombination into p2GW7 or pB2GW7 (VIB,

Ghent University, Belgium). The Gateway destination vectors

used are designed for transient 35S promoter-driven gene

expression in protoplasts or, in the case of pB7WGF2 and

pB2GW7, in N. benthamiana plants.

S. lycopersicum MAPK kinase and MAPKK kinase cloning
To generate the constructs used for epistasic analysis of the

MAP kinase signaling cascade, four primer combinations:

SlMEK1-attB1/SlMEK1-attB2, SlMEK2-attB1/SlMEK2-attB2,

SlMAP3Ka-attB1/SlMAP3Ka-attB2 and SlMAP3Ke-attB1/

SlMAP3Ke-attB2 (listed in Table S3) were used to amplify by

PCR SlMEK1-DD, SlMEK2-DD, SlMAP3Ka-KD and SlMAP3Ke-

KD from pER8 plasmid constructs, respectively. Subsequently,

Gateway attB linkers were added via PCR using primers attB1-

adapter and attB2-adapter. The obtained PCR products were

introduced into pDONR201 to generate entry clones using the

Gateway recombination cloning technology (Invitrogen). The

genes were further recombined into the vector p2GWF7 (C-

terminal GFP fusion – VIB, Ghent University, Belgium). The

resulting plasmid constructs, p35S-SlMEK1-DD-GFP, p35S-

SlMEK2-DD-GFP, p35S-SlMAP3Ka-KD-GFP and p35S-SlMAP3Ke-

KD-GFP were used for protoplast transfection as described below.

Plasmid DNA preparation
Plasmid DNA was isolated from E. coli DH5a liquid cultures by

column purification using the PureYield Plasmid Midi-prep system

(Promega) following the manufacturer’s instructions. For selected

candidate gene, control genes and reporter gene constructs, higher

amount of the corresponding plasmids were purified on a cesium

chloride density gradient.

Protoplast preparation and transfection
S. lycopersicum mesophyll protoplasts were prepared as described

by Nguyen et al., [52] with slight modifications. The lower

epidermis of fully expended leaflets was gently rubbed with grated

quartz, rinsed with sterile water and leaf strips were floated on

enzyme solution containing 2% cellulose ‘Onozuka’ R10 (Yakult

Pharmaceutical Industry), 0.4% pectinase (Sigma) and 0.4 M

sucrose in K3 medium. After 30 min vacuum-infiltration and 3 h

incubation at 30uC in the dark, the enzyme-protoplast mixture

was filtered through a 45–100 mm nylon mesh. Viable protoplasts

were collected by sucrose gradient centrifugation and washed in

W5 buffer. After recovery on ice for 2 h, protoplasts were

harvested by centrifugation and suspended to a density of 6*105

cells/ml in MMG buffer prior polyethylene glycol-mediated

transfection. 100 mg plasmid DNA/ml protoplast suspension was
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used during transfection. Protoplasts samples were then incubated

in W1 buffer at 20uC in the dark for 12 to 16 h allowing plasmid

gene expression.

The preparation of A. thaliana mesophyll protoplasts was

performed according to the protocol from Yoo et al., [70] with

minor changes. Briefly, thin leaf stripes were dipped into 1.5%

cellulose ‘Onozuka’ R10 – 0.4% macerozyme R10 solution

(Yakult Pharmaceutical Industry), vacuum-infiltrated for 30 min

and digested for 3 h at 20uC in the dark. After two subsequent

washing steps with W5 buffer Arabidopsis protoplasts were

suspended in MMG buffer to a concentration of 2*105 cells/ml.

Arabidopsis protoplast transfection was performed as for tomato.

Luciferase and b-glucuronidase (GUS) reporter gene
assays

Luciferase and GUS reporter gene assays were conducted to

screen for immunity-suppressing effector genes. For this, A. thaliana

or S. lycopersicum protoplasts were co-transfected with pFRK1-Luc,

pUBQ10-GUS and an effector gene construct (or empty p2FGW7

serving as GFP control). For the luciferase assay, luciferin was

added to 600 ml transfected protoplast solution to a final

concentration of 200 mM. Protoplasts were transferred to an

opaque 96-well plate (100 ml per well). For each sample, flg22 was

added to 3 wells to a final concentration of 500 nM (+flg22). The

remaining 3 replicates were left untreated (2flg22). The lumines-

cence reflecting the luciferase activity was measured at different

time-points using a Berthold Mithras LB 940 luminometer. For

the GUS assay, 50 ml transfected protoplast solution of each

sample was treated with 500 nM flg22 (+flg22) and 50 ml were left

untreated (2flg22). Protoplast pellets were collected 3 or 6 h after

flg22 elicitation. The cells were lysed in 100 ml CCLR solution (cell

culture lysis reagent, Promega). For each sample, 3 technical

replicates of 10 ml were incubated with 90 ml MUG substrate

(1 mM 4-methyl-umbelliferyl-b-D-glucuronide, 100 mM Tris-

HCl pH 8.0, 2 mM MgCl2) for 30 min at 37uC. The reaction

was stopped with 900 ml 0.2 M Na2CO3. The fluorescence was

monitored in an opaque plate using a MWG 96-well plate reader

with lex = 360 nm and lem = 460 nm.

Statistical analysis of reporter gene assay data
Raw data of Luciferase and GUS assays were processed using

Microsoft Excel. First the mean value of the +flg22 and the

2flg22 triplicates was calculated for each sample in both assays of

an experiment. Next, the +flg22/2flg22 ratio was calculated

using the values from the 3 or 6 h time-point of the Luciferase

assay and divided by the corresponding +flg22/2flg22 ratio of

the GUS assay for normalization. Statistical analysis was

performed using one-way ANOVA followed by Dunnett’s

multiple comparison test.

RNA isolation, cDNA synthesis and quantitative real-time
PCR (qRT-PCR)

Total RNA from 400 ml A. thaliana protoplasts was extracted

with TRI reagent (Ambion) and treated with DNase I (Machery-

Nagel) following the suppliers’ protocols. Poly A-tailed RNA (1 mg)

was converted to cDNA using the RevertAid reverse transcriptase

(Fermentas) and oligo-dT primers. qRT-PCR reactions were

performed in triplicates with Maxtra SYBR Green Master Mix

(Fermentas) and were run on a Biorad iCycler according to the

manufacturers’ instructions. Relative gene expression was deter-

mined with a serial cDNA dilution standard curve. The Actin

transcript was used as an internal control in all experiments. Data

was processed with the iQ software (Biorad).

qRT-PCR to measure PiRXLR gene expression was carried out

on a time-course of potato leaves (cv Desiree) infected with P.

infestans isolate 88069. Total RNA from infected leaf discs was

extracted with RNeasy Plant mini kit (Qiagen) and treated with

DNase I (Qiagen) following the suppliers’ protocols. Poly A-tailed

RNA (1 mg) was converted to cDNA using the Superscript II

reverse transcriptase (Invitrogen) and oligo-dT primers. qRT-PCR

reactions were performed in triplicate with Power SYBR Green

Master Mix (ABgene) and run on a Biorad Chromo4 cycler

according to the manufacturer’s instructions. Relative gene

expression was determined using the DDCT method, and P.

infestans ActA gene was used as an internal control in all

experiments, as described in Whisson et al [32]. Data was

processed with Opticon monitor software (Biorad). Primers used

in qRT-PCR reactions are listed in Table S3.

Detection of phosphorylated MAP kinase and GFP-fusion
proteins by immunoblotting

To monitor the activation of MAP kinase, transfected proto-

plasts were challenged with 500 nM flg22. Pellets from 100 ml

protoplast solution were collected 0, 15 and 30 min after

treatment and denatured in protein loading buffer. Proteins were

loaded onto a 13.5% SDS-polyacrylamid gel and separated by

electrophoresis (SDS-PAGE) using the Biorad MiniProtean

equipment according to the manufacturer’s instructions. PageRu-

ler Prestained protein ladder (Fermentas) was used as a molecular

weight marker. Proteins were blotted onto nitrocellulose mem-

branes (Hybond–ECL, Amersham) and stained with 0.1%

Ponceau S to visualize equal sample loading. The membranes

were blocked for 1 h at room temperature in 5% skimmed milk in

TBS-T buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1%

Tween 20), incubated overnight at 4uC in primary antibody

solution (anti-phospho-p44/42 MAPK antibody, dilution 1/1000

in 5% BSA in TBS-T, Cell Signaling Technology) and finally

incubated for 1 h at room temperature in secondary antibody

solution (alkaline phosphatase-coupled anti-rabbit IgG antibody,

dilution 1/3000 in TBS-T, Sigma). The immunoblot was revealed

in NBT/BCIP detection solution.

The expression of GFP-tagged PiRXLR effectors was assessed

by immunoblotting using polyclonal anti-GFP antibody produced

in rabbit or in goat (Acris Antibodies) at a 1/3000 dilution in 5%

BSA in TBS-T. For this, protoplast samples were collected 12 (for

S. lycopersicum) or 24 h (for A. thaliana) after transfection and SDS-

PAGE and immunoblotting were carried out as described above.

Immunoprecipitation and in vitro kinase assay
The MAP kinase in vitro kinase assay was carried out as

described by He et al., [48]. Briefly, 1 ml transfected protoplasts

were lysed in 1 ml of immunoprecipitation (IP) buffer (150 mM

NaCl, 50 mM HEPES pH 7.4, 1 mM EDTA, 1 mM DTT, 0,1%

Triton X-100, 16phosphatase inhibitor cocktail [PhosphoSTOP,

Roche Applied Science] and 16 protease inhibitor cocktail

[Complete EDTA-free, Roche Applied Science]). HA-tagged

SlMPK1 and SlMPK3 kinases [52] were immunoprecipitated

from lysates after adding 20 ml anti-H antibody-coupled beads

(Roche Applied Science) and incubated for 3 h at 4uC with gentle

shaking. After centrifugation at 500 g for 1 min, the immunopre-

cipitated material was washed with IP buffer followed by a wash

with kinase buffer (20 mM Tris-HCl pH 7.5, 20 mM MgCl2,

5 mM EDTA and 1 mM DTT). The kinase reaction was

performed by adding 25 ml of kinase buffer (0.25 mg/ml MBP,

100 mM ATP and 5 mCi [c-32P] ATP) for 30 min at RT. The

reaction was stopped with 46 SDS-PAGE loading buffer. The
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32P-labeled MBP was separated by SDS/PAGE (15%) gel and

visualized by autoradiography.

Cell death and sub-cellular localization studies
To determine the cell death rate after transfection (percentage

of dead cells/total number of cells), 100 ml protoplast samples were

incubated for 24 h and subsequently stained with 1 mg propidium

iodide. Stained protoplasts were counted using a Nikon Eclipse 80i

epifluorescence microscope with the following filter: TRITC EX

540/40, DM 565, BA 605/55. For sub-cellular localization studies

protoplasts were monitored 12 h post-transfection and N.

benthamiana leaves at 2 days post-infiltration. Imaging was

performed using Leica TCS SP2 AOBS confocal microscopes

with HCX PL APO lbd.BL 6361.20 W, L 4060.8 and L 2060.5

water immersion objectives. Samples were excited by an argon

laser and fluorescence emission was detected at 496–552 nm for

GFP and 620–726 nm for chloroplasts. The pinhole was set to 1.5

airy units for protoplasts and 1 airy unit for leaf cells. Single optical

section images were acquired from protoplasts and z-stacks were

collected from leaf cells and projected and processed using the

Leica LCS software and Adobe Photoshop CS3.

Agrobacterium-mediated effector expression
A. tumefaciens transformed with pB7WG2 or pB7WGF2 vector

constructs were grown overnight, pelleted, re-suspended in

infiltration buffer (10 mM MES pH 5.6, 10 mM MgCl2 and

200 mM acetosyringone) and adjusted to the required OD600

before infiltration into N. benthamiana leaves.

Cell death suppression
A. tumefaciens cultures were grown as above and subsequently

mixed together to a final optical density at 600 nm (OD600) of 0.3

for each construct except Cf4, which was used at 0.6, N.

benthamiana plants were infiltrated using a 1 ml needleless syringe

through the lower leaf surface. Three leaves on six plants were

used for each biological replicate. Cell death was scored at 7 d

post-infiltration (dpi). An individual inoculation was counted as

positive if .50% of the inoculated area developed clear cell death.

The mean percentage of total inoculations per plant developing

cell death of combined data from at least two biological replicates

was calculated. One-way ANOVA was performed to identify

statistically significant differences.

P. infestans infection assay
A. tumefaciens Transient Assays (ATTA) in combination with P.

infestans infection were carried out as described [36]. Briefly,

Agrobacterium cultures were re-suspended in infiltration buffer at a

final concentration of OD600 = 0.1 and infiltrated in N. benthamiana

with the bacteria harboring the vector control on one side of the

leaf midrib and the bacteria harboring the PiRXLR effector

constructs to be tested on the other. P. infestans strain 88069

cultured on Rye Agar at 19uC for 2 weeks was used for plant

infection. Plates were flooded with 5 ml cold H2O and scraped

with a glass rod to release sporangia. The resulting solution was

collected and sporangia numbers were counted using a haemo-

cytometer and adjusted to 30,000 sporangia/ml. After 1 day, each

agro-infiltration site was inoculated with 10 ml droplets of

sporangia. Three leaves per plant for 4–6 intact plants were used

for each biological replicate. Lesions were measured and

photographed at 7 days post-infection and data of at least two

biological replicates were combined. Statistically significant diffe-

rences in lesion size were identified by one-way ANOVA with

pairwise comparisons performed using the Holm-Sidak method.

Supporting Information

Figure S1 S. lycopersicum and A. thaliana protoplasts used as

transient expression systems for reporter gene assays and

monitoring of MAP kinase activation. (A, B) Mesophyll A. thaliana

(A) or S. lycopersicum (B) protoplasts were co-transfected with the

two reporter gene constructs pFRK1-Luc and pUBQ10-GUS and

either p35S-GFP (control vector), p35S-AvrPto-GFP (P. syringae

effector AvrPto) or p35S-AvrPto G2A-GFP (non-myristoylated

AvrPto). Protoplasts were treated with flg22 (+flg22) or left

untreated (2flg22) and reporter gene activities were assayed 3 or

6 h later for S. lycopersicum and A. thaliana, respectively. For each

data set, flg22-induced luciferase activity was calculated relative to

the untreated sample and was normalized by the corresponding

GUS activities in flg22 and untreated sample (pFRK1-Luc activity

+flg22/2flg22). Seven independent biological experiments were

carried out. Within each experiment three technical replicates

were performed. Pooled data are presented as mean 6 SEM.

One-way ANOVA followed by Dunnett’s multiple comparison test

was used to decipher statistically significant differences in

luciferase/GUS activity between GFP-expressing and P. syringae

effector expressing protoplasts. An asterisk marks data sets with a

p-value,0.05. (C, D) MAP kinase activation upon flg22 challenge

in A. thaliana (C) and S. lycopersicum (D) protoplasts. Immunoblot-

ting of phosphorylated MAP kinase was performed with GFP-,

AvrPto-GFP- or AvrPto G2A-GFP-producing protoplast samples

collected 0, 15 and 30 min after flg22 treatment. A cross-reacting

antibody raised against phosphorylated mammalian MAP kinase

p44/p42 was used for detection. GFP and GFP fusion protein

presence was confirmed for the same sample set using an anti-GFP

antibody. The experiment is representative of at least two repeats.

Ponceau S staining served as a control for equal sample loading

(RuBisCO signal shown).

(TIF)

Figure S2 Cell death rate in S. lycopersicum protoplasts transiently

producing N-terminally GFP-tagged SFI effectors. (A) Dead cells

were stained with propidium iodide (PI) 24 h after transfection

with p35S-GFP control and observed with epifluorescence

microscopy. (B) The number of dead and the total number of

protoplasts were assessed to determine the percentage of cell

death. Three independent experiments were performed where at

least 150 protoplasts were counted per data set. Mean values 6

SEM are presented. One-way ANOVA followed by Dunnett’s

multiple comparison test was performed to statistically compare

the p35S-GFP-effector-transfected protoplasts to the p35S-GFP

control. ns = non-significant.

(TIF)

Figure S3 Luciferase reporter gene assay in protoplasts

expressing P. infestans AVRblb2 family members. (A, B) Mesophyll

protoplasts from S. lycopersicum (A) and A. thaliana (B) were used and

experiments and statistical analysis were carried out as described

in Figure S1. Mean values 6 SEM are from four independent

experiments.

(TIF)

Figure S4 Expression profiles of SFI effector genes during a

time-course of potato infection. The expression of SFI genes was

assessed across time-points after potato (cv Desiree) inoculation

(24–60 hpi) relative to their expression in sporangia (S), which was

given a value of 1. Expression of each gene was normalized against

the endogenous P. infestans ActA gene. Each expression point is the

combined analysis from 3 biological replicates and error bars

represent 6 SEM.

(TIF)
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Figure S5 Cell death rate in A. thaliana protoplasts transiently

producing N-terminally GFP-tagged SFI effectors. (A) Dead cells

were stained with propidium iodide (PI) 24 h after transfection

with p35S-GFP control. (B) The number of dead and the total

number of protoplasts were assessed to determine the percentage

of cell death. Three independent experiments were performed

where at least 150 protoplasts were counted per data set. Mean

values 6 SEM are presented. One-way ANOVA followed by

Dunnett’s multiple comparison test was performed to statistically

compare the p35S-GFP-effector-transfected protoplasts to the p35S-

GFP control. ns = non-significant.

(TIF)

Figure S6 Expression profile of N-terminally GFP-tagged SFI

effectors in protoplasts (A, B) and N. benthamiana leaves (C).

Immunoblotting with anti-GFP antibody was carried out on

protoplast samples from S. lycopersicum (A) and A. thaliana (B) 24 h

post-transfection and on N. benthamiana (C) leaf extracts 48 h post-

inoculation with A. tumefaciens. Signals corresponding to the

different GFP fusion proteins are pointed out with an arrow.

The asterisk indicates a non-specific signal. All effectors have the

expected apparent molecular weight. Partial protein degradation

was observed in some samples. The experiment is representative of

two to three repeats. Ponceau S staining served as a loading

control.

(TIF)

Figure S7 Luciferase reporter gene assay in protoplasts

expressing N-terminally GFP-tagged SFI effectors. (A, B) Meso-

phyll protoplasts from S. lycopersicum (A) and A. thaliana (B) were

used and experiments and statistical analysis were carried out as

described in Figure S1. Mean values 6 SEM are from at least

three independent experiments.

(TIF)

Figure S8 Luciferase reporter gene assay in protoplasts

expressing the N- and C-terminally GFP-tagged SFI8/AVRblb2

(A, B). Mesophyll protoplasts from (A) S. lycopersicum and (B) A.

thaliana were used and experiments and statistical analysis were

carried out as described in Figure S1. Mean values 6 SEM are

from at least three independent experiments.

(TIF)

Figure S9 Sub-nuclear localization in N. benthamiana of SFI

effectors. Typical confocal microscope close-up images of nuclei in

N. benthamiana leaf cells expressing free GFP (GFP) as a control and

N-terminally GFP-tagged SFI effectors (SFI numbers indicated).

(TIF)

Figure S10 MAP kinase in vitro kinase assay in S. lycopersicum

protoplasts. (A) GFP or constitutively active MAPK kinase with C-

terminal GFP tag (SlMEK1-DD-GFP and SlMEK2-DD-GFP) were

co-expressed with hemagglutinin (HA)-tagged S. lycopersicum MAP

kinase SlMPK1 or SlMPK3. (B) GFP or the active kinase domain of

MAPKK kinase with C-terminal GFP tag (SlMAP3Ka-KD-GFP

and SlMAP3Ke-KD-GFP) were co-expressed with hemagglutinin

(HA)-tagged S. lycopersicum MAP kinase SlMPK1 or SlMPK3. (A, B)

HA-tagged MAP kinase were immunoprecipitated with anti-HA

antibody for an in vitro kinase assay with [c-32P] ATP and myelin

basic protein as phosphorylation substrate (MBP32P - upper panels).

Endogenous MAP kinase activation was detected with antibody

raised against activated MAP kinase p44/p42 (middle panels). The

lower panels present immunoblots with anti-HA and anti-GFP

antibodies showing the expression of HA- and GFP-tagged proteins,

respectively. Coomassie blue staining served as a loading control.

The experiments are representative of at least two repeats.

(TIF)

Table S1 List of the PiRXLR effector genes tested in the MTI-

suppressor screen in S. lycopersicum and A.thaliana protoplasts. Gene

identification number, affiliation to an RXLR gene family [28],

nucleotide and protein sequence (without signal peptide) are

presented.

(XLSX)

Table S2 List of the PiRXLR effector genes of the AVRblb2

family that were tested in the MTI-suppressor screen in S.

lycopersicum and A.thaliana protoplasts. Gene identification number,

affiliation to an RXLR gene family [28,36], nucleotide and protein

sequence (without signal peptide) are presented.

(XLSX)

Table S3 List of used primer sequences.

(XLSX)
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