
A Novel Video Game Peripheral for Detecting AR'HIf S
MASSACHUSETTS INSTi

Fine Hand Motion and Providing Haptic Feedback OF TECHNOLOGY

by-by JUN 28 2012

Samantha N. Powers

Submitted to the Department of Mechanical Engineering in partial fulfillment of the -

requirements for the degree of Bachelor of Science in Mechanical Engineering

and

Lauren K. Gust

Submitted to the Department of Mechanical Engineering in partial fulfillment of the

requirements for the degree of Bachelor of Science in Engineering as Recommended by
the Department of Mechanical Engineering

at the

Massachusetts Institute of Technology

June 2012

@ 2012 Samantha Powers and Lauren Gust. All rights reserved.

The authors hereby grant to MIT permission to reproduce and to distribute publicly

paper and electronic copies of this thesis document in whole or in part in any medium

now known or hereafter created.

/ (1

Signatures of Authors .... . ......... ............................

Department of Mechanical Engineering
May 25, 29)

C ertified by .................................................. (... ................ ........... ... . ........................
David Wallace

Professor of Mechanical Engineering

Thesis Supervisor

A ccepted by ................................................... ................... ............. ........
John H. Lienhard V

Samuel C. Collins Pro essor of Mechanical Engineeering

Undergraduate Officer





A Novel Video Game Peripheral for Detecting Fine Hand

Motion and Providing Haptic Feedback

by

Lauren K. Gust

Submitted to the Department of Mechanical Engineering
on May 25, 2012, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Engineering as Recommended by the Department of

Mechanical Engineering

and

Samantha N. Powers

Submitted to the Department of Mechanical Engineering
on May 25, 2012, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Mechanical Engineering

Abstract

This thesis documents the design and implementation of a game controller glove that

employs optical tracking technology to detect movement of the hand and fingers. The

vision algorithm captures an image from a webcam in real-time and determines the

centroids of colored sections on a glove worn by the player; assigning a distinctive
identifier for each section which is associated with a 3D model retrieved from a pre-

existing library. A Vivitouch artificial muscle module is also mounted to the top of

the glove to provide vibratory haptic feedback to the user. The system has been user
tested and a number of potential use scenarios have been conceived for integration of

the controller in various gaming applications.

Thesis Supervisor: David R. Wallace
Title: Professor

3



4



Acknowledgments

We would like to thank a number of people who have provided invaluable assistance

in making this thesis possible: our advisor David Wallace for his advice and patience,

Artificial Muscle for providing us with the Vivitouch components, Bradley Abruzzi

for his NDA assistance, and the many friends and family who have kept us sane these

four years.

5



6



Contents

1 Introduction 11

1.1 Thesis Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Current controller schemes 13

2.1 Conventional controllers . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Acceleration-based controllers . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Full motion controllers . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Issues with motion-based controllers . . . . . . . . . . . . . . . . . . . 15

3 Designing a hand tracking system 17

3.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Algorithm design considerations . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Game industry compliant . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Algorithm design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Determining the centroids . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Determining the identifier . . . . . . . . . . . . . . . . . . . . 23

3.3.3 Comparing to the library . . . . . . . . . . . . . . . . . . . . . 24

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Glove design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Haptic feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7



4 Testing and applications 29

4.1 Testing the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Issues encountered . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Spellcasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Simulation games . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Conclusion 35

5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A ImageProcessor.cpp 37

B Library Matching 49

8



List of Figures

1-1 The controller prototype . . . . . . . . . . . . . . . . . . . . . . . . . 11

1-2 A sample image from the pose library . . . . . . . . . . . . . . . . . . 12

2-1 Comparison of Wii remote (left) and PlayStation Move (right) [14] . . 15

3-1 Example of RGB colorspace values: (a) baseline red, (b) darker red,

(c) less saturated red . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3-2 The pixels of the first row are assigned Connected Components num-

bers. The second 2 is assigned because the pixel to its left is the same

color, and had already been assigned a number. The white block is not

a color of interest, so it is not assigned a number at all . . . . . . . . 21

3-3 An illustration of the third case, where the pixels to the top and left

of the current pixel are different colors. The two numbers (3 and 1)

are declared to be describing the same connected component, and the

lower number is chosen for the current pixel . . . . . . . . . . . . . . 22

3-4 The completed first pass over our sample image. The numbers declared

equivalent are shown to the right . . . . . . . . . . . . . . . . . . . . 22

3-5 The finished connected components graph . . . . . . . . . . . . . . . 23

3-6 The GUI for the Java listener; the circles below the pose display rep-

resent the centroids of the colored regions . . . . . . . . . . . . . . . . 25

3-7 The glove prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3-8 A Vivitouch haptic feedback component . . . . . . . . . . . . . . . . 27

3-9 How EAP technology works [20] . . . . . . . . . . . . . . . . . . . . . 27

9



4-1 The initial hand model mesh . . . . . . . . . . . . . . . . . . . . . . . 29

4-2 Bone and armature placement in the hand model . . . . . . . . . . . 30

4-3 Weight painting is used to control deformation . . . . . . . . . . . . . 30

4-4 Testing pose recognition . . . . . . . . . . . . . . . . . . . . . . . . .. 31

10



Chapter 1

Introduction

In recent years, a number of game controllers have been developed which are based

on player movements, for example: the Nintendo Wii, the PlayStation Move, and the

Xbox Kinect [1, 2, 3]. These control schemes are offered as an alternative to the more

traditional analog controller which presents an array of buttons. Both traditional

and motion-based controllers have a number of issues inherent in their design, pro-

viding motivation for the development of a new controller capable of detecting fine

movements of the hand and fingers and providing improved haptic feedback based on

player actions.

The proposed controller will accomplish these aims by utilizing a colored glove

which is placed on the player's hand (Figure 1-1).

Figure 1-1: The controller prototype

11



When the player moves his gloved hand in front of a standard webcam, the im-

age is captured and processed by a vision algorithm in real-time which determines

the position of these colored patches and retrieves a three-dimensional model of the

gesture from a library (Figure 1-2).

Figure 1-2: A sample image from the pose library

Haptic feedback is accomplished by placing a Vivitouch haptics component on the

back of the glove. The Vivitouch acts like an artificial muscle and is able to vibrate

at different frequencies with a fast response time, producing complex and realistic

haptic responses to in-game actions [4].

1.1 Thesis Outline

Chapter two will focus on analog and motion-based game controllers and the tech-

nologies they utilize. Issues associated with these controllers will also be discussed.

Chapter three describes the design of the controller, the vision processing algo-

rithm it utilizes to identify movements and gestures, and the implementation of a

haptic module.

Chapter four describes how the product has been tested by means of 3D hand ma-

nipulation and how this controller may be integrated into possible gaming scenarios.

12



Chapter 2

Current controller schemes

2.1 Conventional controllers

Conventional analog game controllers consist of a handheld device with an array of

buttons and joysticks which are used to control character actions in the game. Button

actions are dependent on the game being played and are often customizable through

game menus.

Analog controllers have been adapted to incorporate other body motions by trans-

lating the basic button pressing functionality into new form factors. The game Dance

Dance Revolution incorporates analog controls into a pad which is placed on the floor

[5]. The player then uses his feet to step on arrows in time to visual and audio cues

in the game. The Rock Band game series developed by Harmonix integrates analog

buttons into controllers designed to look like musical instruments [6].

2.2 Acceleration-based controllers

The Nintendo Wii console is the first commercial game controller to employ an ac-

celerometer for control [7]. The Wii remote is able to sense three axes of acceleration

using the ADXL330 accelerometer[8]. The system also uses a PixArt optical sensor

to determine where the remote is pointing. The remote senses infrared light from a

Sensor Bar and calculates the distance between the remote and the Sensor Bar using

13



triangulation [9, 10]. The Wii remote still incorporates analog buttons for actions

and selections and provides basic haptic feedback through the use of a rumble pack

in the controller.

The PlayStation Move is a motion-sensing controller used with the Sony PlaySta-

tion [2]. A glowing orb at the top of the controller serves as an active marker that is

tracked by the PlayStation Eye camera. The orbs uniform spherical shape and known

size allow the system to dynamically track the controllers position and distance from

the camera, resulting in precise three-dimensional motion tracking. The controllers

internal sensors include two inertial sensors, a three-axis linear accelerometer and a

three-axis gyroscopic sensor that are used to track rotation as well as overall motion.

An internal magnetometer is employed to calibrate the controller against the Earths

magnetic field to help correct against sensor drift [11]. Like the Wii remote, the

Move incorporates analog buttons in addition to motion tracking technology. Addi-

tionally, the orb at the top of the Move controller glows using RGB light-emitting

diodes (LEDs). These act as a three-dimensional pixel, providing visual feedback to

the player as he manipulates the controller.

2.3 Full motion controllers

The Microsoft Xbox Kinect is the first full body motion sensing input device [3]. The

Kinect sensor is connected to a base with a motorized pivot and is designed to be

placed above or below the video display. The device includes 3D depth sensors, an

RGB camera and a microphone for motion and sound detection [12]. The depth sensor

employs an infrared laser projector and a monochrome CMOS senor to capture 3D

video data. Using proprietary software, the device is able to track two active players

for motion analysis with feature extraction of 20 joints per player [13].

14



2.4 Issues with motion-based controllers

Both the Wii remote and PlayStation Move suffer from the same drawback-namely,

they are only able to track a single point through 3D space. While the Kinect is able

to track full body motions, its resolution is not sufficient to detect finer movements;

for example, the motion of individual fingers. Furthermore, the absence of any body-

mounted peripherals in the Kinect system means that feedback given by the system

is purely audio-visual without haptic feedback.

From a product design standpoint, current handheld controller models can be

improved. The Wii remote (Figure 2-1) has a square profile with beveled edges which

can dig into the palm of the hand over time and does not accommodate different grip

styles.

Figure 2-1: Comparison of Wii remote (left) and PlayStation Move (right) [14]

Buttons are placed in such a way that the entire hand must be moved to press

the lower buttons. Inadvertent button presses are also an issue when the remote is

held in the players hand. This design choice was likely made to allow the remote

to be used in a sideways orientation that mimics the layout of older Nintendo game

controllers, though overall results in a weaker design.

15



The PlayStation Move (Figure 2-1) has a rounded design that is better for accom-

modating different grip styles. The button configuration does not require significant

grip adjustments, however buttons placed on the side of the controller are still prone

to inadvertent selection due to grip. However, the Moves product form has caused

many users to draw visual comparisons between it and objects like a lollipop or a

massage vibrator [15].

16



Chapter 3

Designing a hand tracking system

3.1 Previous work

Researchers at the Massachusetts Institute of Technology Computer Science and Ar-

tificial Intelligence Laboratory (CSAIL) have developed a user-input device that cap-

tures unrestricted motion of a hand as well as the individual articulation of the fingers

[16]. This system determines the movement of a hand wearing a colored glove by uti-

lizing a single camera.

Their approach utilizes a database of hand poses, each of which is indexed by

a rasterized image of the pose. Given a query image from the camera, the correct

pose is estimated by searching the database of these index images. To determine the

nearest neighbor to this image, the query image and a database image are compared

by computing the divergence from the database to the query and from the query to

the database. The average of these two distances is computed to obtain a symmetric

distance.

While this method can produce the approximate hand pose, it cannot account for

the distance of the gloved hand to the camera. To address this limitation, the work

in this thesis adds 2D projection constraints in association with each database image

for the centroids of each color patch. By transforming the projection constraints into

the coordinate space of the original query image, the global hand position is obtained.

17



3.2 Algorithm design considerations

The purpose of the proposed game controller is to be used in games. This implies

three things: it needs to be robust to a wide variety of situations and players, it needs

to be readily incorporated into games by game developers, and it needs to be fast

enough that other game processing can occur simultaneously.

3.2.1 Robustness

Robustness in vision systems is primarily threatened by changing lighting conditions,

which causes colors to change greatly with both location and time of day.

Images are typically read from cameras in the RGB colorspace, as cameras are

typically equipped with an array of three sensor types, one of which detects red,

one green, and the last blue. This colorspace is, unfortunately, not very robust to

changing light conditions. Figure 3-1 shows an example of this. Figure 3-la shows a

pure red, which has an RGB value of (255, 0, 0). Figure 3-1b shows a pure red with

decreased lightness (as though it were less well-lit), which has an RGB value of (128,

0, 0). Finally, Figure 3-1c shows a pure red with a decreased saturation (same color,

but less intensely colored), which has an RGB value of (255, 128, 128). RGB values

change dramatically for the same color in various lighting conditions, which increases

the amount of analysis necessary to match colors to a saved palette.

(a) RGB (225, 0, 0) (b) RGB (128, 0, 0) (c) RGB (255, 128, 128)

Figure 3-1: Example of RGB colorspace values: (a) baseline red, (b) darker red, (c)
less saturated red

18



However, there are a variety of transformations that can be done to RGB colors

to make them more suitable for image processing. The hand-tracking algorithm de-

scribed in Section 3.1 uses the Chong colorspace, but this paper opts for the more

commonly used HSV colorspace. In HSV the color wavelength, or "hue", is repre-

sented by one number, which typically ranges between 0 and 360, which is based

on the color circle. For example, red has a hue of 0, blue 240, green 100, etc. The

other two dimensions of color in HSV are the saturation and the value. Saturation

represents how intense a color is, and value is related to how dark a color is. The

color in Figure 3-la has an HSV representation of (0, 100, 100); 3-1b (0, 100, 50);

3-1c (0, 50, 100). Important to note is the fact that all three have the same hue.

Furthermore, color-based vision systems also have the difficulty of needing to be

robust to the colors of the environment. A user with a brightly colored shirt or

a vibrant mural should ideally not impact the performance of the program. This

algorithm's solution to this problem is described below.

3.2.2 Game industry compliant

To be feasibly used by game developers, the libraries developed need to be written

in a language that may be easily incorporated into existing development structures.

Games are generally developed using a game engine, which is essentially a library

of premade functions that aid event scripting, collision physics, state transitions,

character manipulation and animation, etc [17]. A large number of these engines are

written in C++, or scripted in C derivatives (Lua). C++ is so widespread in game

development that it has been called the industry standard [18]. Therefore it was

decided to program the libraries for this gaming peripheral in C++.

3.2.3 Speed

C++ is so common in the gaming industry at least partially because of its speed.

However, some games can be quite processor intensive, and it would be best if the

use of the glove as a peripheral caused as minimal an impact on computation power

19



as possible. Thus the image algorithm used is as minimalistic as possible, sacrificing

the accuracy afforded by predictive algorithms for the speed of a more direct solution.

3.3 Algorithm design

Put simply, the algorithm first determines the centroids of the colors in the image.

Second, it assigns a distinctive identifier to an image captured by the webcam based

on these centroids. Finally, it compares this identifier to a library of existing images,

each of which is associated with a 3D model.

3.3.1 Determining the centroids

During processing, the image captured by the webcam is iterated through twice. The

pixels are processed starting in the top left and proceeding right and downwards. The

key challenge being solved by this part of the algorithm is identifying and segmenting

colors into clusters of pixels, called "Connected Components". The centroids of these

blobs of color can then be found and processed.

During the first pass, the color at the current pixel is converted to the HSV

colorspace. The hue is then compared to the list of colors known to be on the glove.

If it is found to be a relevant color, the pixel above and the pixel to the left are both

checked. The result of this check can be separated into three cases. The first is if

neither the top pixel or the left pixel is the same color as the current pixel, in which

case the current pixel is assigned a new number, its Connected Components number.

The second case occurs when exactly one of those pixels is found to be the same

color as the current pixel, in which case the current pixel is assigned the Connected

Components number of that pixel. These two cases are shown for the first row of a

sample image in Figure 3-2.

20



Figure 3-2: The pixels of the first row are assigned Connected Components numbers.
The second 2 is assigned because the pixel to its left is the same color, and had
already been assigned a number. The white block is not a color of interest, so it is
not assigned a number at all

The third case occurs when both the pixels to the top and to the left are identified

as being the same color as the current pixel, but have been assigned different numbers,

as illustrated in Figure 3-3. In this case the two numbers are saved as being equivalent,

and the current pixel is assigned the lower number.

The process is then continued, giving the result after the first pass as shown in

Figure 3-4. Notice that each connected component has not necessarily been assigned

the same number across all its pixels, yet.

During the second pass, the Connected Component number assigned to every

pixel is checked against the equivalence map. If it has an equivalent number, the

lower one is assigned to the pixel. The finished image is shown in Figure 3-5. Since

we are interested in the centroids of the blobs, this is also computed in the second

pass. This is accomplished by totaling the x positions and y positions of the pixels

21



Map
Key

1

Map
Values

1,3

Figure 3-3: An illustration of the third case, where the pixels to the top and left of
the current pixel are different colors. The two numbers (3 and 1) are declared to be
describing the same connected component, and the lower number is chosen for the
current pixel

Map
Key

1

4

6

Map
Values

1,3

4,5

6,7

Figure 3-4: The completed first pass over our sample image. The numbers declared
equivalent are shown to the right

belonging to each Connected Component, to be divided by the pixel count at the end.

This algorithm can be improved by having each connected component be a linked

list which points to the start of the list of pixels it contains. When two connected

components numbers are determined to be the same, the list belonging to the higher

number would simply be appended to the list of the lower number. This would

22



Figure 3-5: The finished connected components graph

remove the need for the second pass through the pixels for the purpose of completing

the connected components algorithm. To determine the centroids of each connected

component, its list of pixels would simply be iterated through.

3.3.2 Determining the identifier

This algorithm primarily concerns itself with the orientation of the hand, rather than

the distance from the camera or its position in the webcam's field of view, which will

be added in after the pose has been identified from the library. Therefore the relevant

metric is the angle between components, which is invariant of the size of the hand or

the location in the frame. This eliminates the need for a complex algorithm to center

the hand and resize it in the frame, which can be unnecessarily susceptible to colors

in the environment. This information is encoded in a string such as "0 1 354," which

indicates that using color 0 as the origin, color 1 is at 354 degrees from the x axis.

Using a color's centroid as the origin is what allows the algorithm to be independent

of the hand's location in the frame.

23



3.3.3 Comparing to the library

Library entries are created by capturing an image from the camera and manually

specifying a solid model that matches. This image is used to create an identification

string, as defined above.

These identification strings can then be matched against images the web camera

captures, to determine the position the hand is in. This matching is done by a basic

distance metric; the squared differences in the angles are summed, and the library

entry with the lowest value is selected. The code to compute these distances is given

in Appendix B. Not every color is necessarily in every image; if a pair is missing

from either entry that exists in the other, the angle difference is assumed to be 180

degrees, the maximum possible.

3.4 Implementation

Glove colors are defined using a GUI programmed in C++ that allows the developer

to simply drag a box over a colored region in an image of the glove captured by the

webcam. The average and standard deviation are calculated and saved for use by the

processing code.

The camera capture and image processing for the algorithm described above were

programmed in C++ with the aid of existing OpenCV libraries. The primary code

used to turn an image into a characteristic string is given in Appendix A.

In addition to turning images into strings, the processing code continuously pub-

lishes the characteristic strings to a socket. This socket can then be listened to by

any code to which the developer wishes to link the image processing. For testing

purposes, a Java listener has been programmed. This Java listener has two modes:

the first mode is used to develop the pose library. The second mode displays the hand

position characteristic of the library entry closest to that seen by the webcam (Figure

3-6).

For the first mode, library entries are first specified and then linked to an image

string (received via the socket). There is a preloaded selection of hand poses that can

24



c , 21'-0,5

Q1 Q0, QO,~ 61 Q,8

Match =ode false

Figure 3-6: The GUI for the Java listener; the circles below the pose display represent
the centroids of the colored regions

be flipped through with the arrow keys. These poses can be further rotated in any of

the three dimensions. When the model position is specified, the developer puts the

glove on, holds her hand in front of the camera, and presses the capture button. The

combination of model, angle, and image string together define the library entry.

The second mode disables the user's ability to rotate and switch between poses,

instead pulling up the model that matches the hand position currently in view of the

camera. Since this model matching occurs in real-time, what has been achieved is a

virtual hand mirroring that of the user.

25



3.5 Glove design

The key features of the glove are that it needs to have colors in locations that are

important to track, it needs to be comfortable to wear for a variety of users, and it

needs to be aesthetically pleasing so that users are willing to wear it.

Figure 3-7: The glove prototype

A white glove (Figure 3-7) has been colored such that the colored regions cor-

respond to the individual joints in the hand. These regions have been intentionally

overdefined for robustness as they undergo algorithmic processing. The palm and

back of the hand have been left white, however a product logo could be placed in

these areas. A pocket has been sewn into the back of the glove such that the Vivi-

touch module rests on the top of the hand. While a cotton glove has been used for

this prototype, future versions could use a thinner lycra or spandex material. The size

of the user's hand and correct positioning of the colored sections is an acknowledged

challenge in developing this product. This may be addressed by releasing different

sized gloves where a stretchy material can accomodate variations in hand size.

3.6 Haptic feedback

To enhance the gaming experience, controllers are equipped to produce haptic feed-

back. Conventionally, this is achieved by connecting an eccentric weight to a small

26



motor inside the controller. When the motor spins the weight at high speeds, the

controller vibrates. The major drawback of this method is that it outputs only a

single type of vibration across the entire controller, resulting in limited feedback that

feels one-dimensional.

In 2011, Artificial Muscle Incorporated released the Vivitouch, a proprietary hap-

tics component which produces a wide range of realistic feedback (Figure 3-8) [19].

Figure 3-8: A Vivitouch haptic feedback component

Vivitouch is based on electroactive polymer (EAP) technology, which are polymers

that respond to electrical stimulation with a change in physical, optical, or magnetic

properties [20]. The ViviTouch actuator consists of a dielectric elastomer film which

is sandwiched between two electrodes (Figure 3-9).

Figure 3-9: How EAP technology works [20]

When the polymer is subjected to a voltage potential, it flattens and expands,

27



moving in a planar direction [19]. An inertial mass included in the module amplifies

the vibration of the device and the actuator is controlled using waveforms created as

audio files [22]. Consequently, the device is capable of recreating effects such as the

beating of a heart, or the impact of an arrow in a target. As an integrated product,

a dedicated haptic control channel should be used to drive the haptics.

Given the size of the device and the limited space in the glove, the Vivitouch

actuator has been placed on the back of the hand so as not to interfere with the

user's grip. In future prototypes, placement of a smaller haptic component in the

palm of the hand should enhance feedback.

28



Chapter 4

Testing and applications

4.1 Testing the system

To test the controller, motion of the hand is visualized using a three-dimensional hand

model created using Blender, an open source 3D content creation program [23]. The

basic structure of the hand is modeled using a series of cubes, which are manipulated

into the shape of the palm and index finger. The index finger is then copied and

scaled to produce the remainder of the fingers. Using a proportional editing tool,

the mesh is adjusted until a realistic hand shape is obtained. Finally, the mesh is

smoothed to improve the surface appearance (see Figure 4-1).

Figure 4-1: The initial hand model mesh

29



Since this model must be adjusted into different pose configurations, it is "rigged"

by adding a number of constraints (called an armature) which is made up of a series

of elements called bones (Figure 4-2a). The bone placements mimic the layout of the

specific hand joints. The bones are then controlled via a custom armature (Figure

4-2b) which, when moved, proportionally rotates each joint.

(a) Hand rigged with bones (b) Armature controls the bones

Figure 4-2: Bone and armature placement in the hand model

Adding constraints to each joint ensures that only natural motion is achieved.

For example, the finger joints have been constrained to ensure that they cannot bend

backwards or sideways. A technique called "weight painting" (Figure 4-3) is used to

control the degree to which moving a given armature deforms nearby regions of the

mesh. Each joint is painted using a heat map, where red indicates areas of 100%

deformation and blue indicates areas of 0% deformation. Using the armatures, the

model is posed in a number of configurations and the raw face information is exported

for use in the test demonstration (Figure 4-4).

Figure 4-3: Weight painting is used to control deformation

30



Figure 4-4: Testing pose recognition

4.2 Issues encountered

While testing the system as described above, several issues came up. The first issue

is camera calibration. If the camera is continuously adjusting the white balance,

the colors saved for the algorithm rapidly become inaccurate. This means that the

product will need to disable such white balancing in end-users' cameras to be effective.

The second issue is the camera field of view. It needs to be trivial for the user

to maintain their hand poses in the frame of their webcam. This can most easily be

achieved by giving feedback about the location of the user's hand such they know

when they exceed the limits of their setup.

The third and by far the biggest issue is noise in the environment. In testing the

31



system, the colors seen in the environment often dominated the colors seen in the

glove, and testing needed to be stopped to tweak the color definitions and thresholds.

The system was sufficiently robust that the system would often still obtain the correct

result, but it was insufficiently reliable to be put into a product as-is.

This problem could potentially be solved in a few different ways. The first would

be to include a calibration step done by the user, where a snapshot of the background

is taken and subtracted out of future images. The second would be to more tightly

bound the color definitions, so that fewer colors from the environment are mistaken

for glove colors. This solution has the problem of being highly light-dependent. The

third would be to develop a more intelligent algorithm that subtracts out elements

from the image that are not moving appreciably. It would keep track of the last

known location of the glove, and simply modify this model based on the differences

between successive images taken from the camera. This last option is likely to be the

best, but would itself require fairly substantial development.

4.3 Applications

While gesture-based gaming can be used to create a more immersive experience, it

is important to recognize that not all game play lends itself to gestural control. In

some cases it may even detract from the user experience if complex or unnecessary

gestures are required to complete actions that might be accomplished with the single

press of a button on a conventional controller (i.e. selecting menu options). Potential

applications for the controller in existing games will be presented to provide examples

of how this technology can enhance the users experience when appropriately used.

4.3.1 Spellcasting

The first and perhaps most obvious application of this controller is for spellcasting

mechanics in games. Okami is a Japanese action-adventure game which features a

"celestial brush" which players use in combat, puzzles, and general game play [24].

This mechanic involves drawing patterns with an analog controller stick or the Wii

32



remote to repair bridges, slash enemies, or create in-game effects like wind or wire.

The adventure game Myst V: End of Ages features a similar mechanic where the

player draws on an on-screen tablet to trigger events and move through the world

[25].

A study comparing a pen and a mouse in editing graphic diagrams showed that

users take approximately twice as long to draw a diagram while using a mouse [27].

From these data it may be inferred that a computer mouse or analog controller may

not be the optimal control scheme for such mechanics. Instead, diagrams could be

created by allowing the player to "fingerpaint" by tracing her finger into the air or

on a surface. Additionally, the spellcasting mechanic may be enhanced by mapping

spells to certain hand movements or gestures.

4.3.2 Simulation games

Simulation games attempt to replicate "real life" activities while still retaining ele-

ments of traditional goal-based gaming. In the Trauma Center game series, players

assume the role of a surgeon in order to heal their patients from injuries or diseases

using various surgical instruments and suturing. The games were originally designed

for the Nintendo DS handheld gaming device and the Nintendo Wii, utilizing the DS'

touch screen and the Wii remote motion capabilities, respectively, to simulate the

use of surgical implements. A glove-based controller would improve the plausibility

and immersiveness of the simulation by mapping "real" movements to their in-game

counterparts.

33



34



Chapter 5

Conclusion

A successful works-like prototype of a glove-based gaming peripheral has been built

and tested. It comprises both hardware and software components: a colored glove

with a Vivitouch artificial muscle haptics module and a real-time vision processing

algorithm, respectively.

Following manual color calibration of the glove with the webcam, gestures can be

mapped to various orientations of a corresponding 3D hand model which are stored

in a library. Testing demonstrates that when the user moves her hand into a given

position, the vision algorithm recognizes the gesture and updates the display with

the correct pose from the library. This can be readily extended to other behaviors,

simply by linking a position to an action in a game, for instance, rather than just

rendering a different model. Furthermore, the code developed produces the image

characterization in the form of a string that can be accessed using any programming

language.

The Vivitouch haptics component has been successfully programmed to provide

vibratory feedback in an independent system, however limited driver support has

prevented its full integration into the glove functionality. In addition to the future

work outlined below, the next iteration of the design will strive to incorporate full

haptic support.

35



5.1 Future work

Despite having a working model, there are number of improvements that must be

made to this system before it can be a viable product. Orientation is not supported

in the current implementation and the algorithm should be extended to localize the

orientation of the hand within its reference frame.

For the glove, a looks-like prototype should be created to explore whether different

designs or color schemes might be more aesthetically appealing to users. Ergonomics

and fabric choice should also be considered to ensure that the glove can fit a range of

hand sizes.

A prominent issue with the ergonomics of the works-like prototype is that the

current Vivitouch module is too large to be mounted on the hand. Further collabo-

ration with Vivitouch could allow smaller haptics modules to be sourced. This would

provide a more comfortable user experience and future controllers may be outfitted

with multiple small Vivitouch actuators.

Finally, extensive user testing must be completed to identify potential issues and

improve the user experience. The limited testing performed (Section 4.2) has already

revealed a number of issues with the current device which must be addressed. Testing

the prototype with other webcam setups is particularly important to determine the

system reliability and robustness.

36



Appendix A

ImageProcessor.cpp

#include "../include/ImageProcessor.h"

#include "../include/Image.h"

#include "stdio.h"

#include <tr1/unordered-map>

#include <tr/unorderedset>

#include <vector>

#include <algorithm>

#include <iostream>

#include <sstream>

#include <string>

using namespace std: :trl;

typedef unordered-map<int, unorderedset<int> > imMap;

struct centroidInfo{

int count, xTotal, yTotal, colorIndex, ccIndex;

};

ImageProcessor::ImageProcessor()

37



{

}

ImageProcessor::~ImageProcessor()

{

//dtor

}

string ImageProcessor::process(Image* img, ColorPalette* colorPalette)

{

First loop: determine what the "colorsample" for each pixel is,

and do the first pass of connected components

//static int* dims = img->getDimensionso/scale;

std::cout<<colorPalette->currIndex;

static int dims[2] = {img->getDimensions()[01/scale,

img->getDimensions()[1]/scale};

std::cout<<dims[0]<<"\n";

int hue, colorIndex, ccIndex = 0, colorIndexUp, colorIndexLeft;

Image::RgbPixelFloat temp, tempUp, tempLeft;

bool newColor;

imMap::iterator leftIter, upIter;

int** cc = new int*[dims[0]];

imMap equivalence;

for(int x = 0; x<dims[0]; x++) {

cc[x]=new int[dims[1]];

for(int y = 0; y<dims[1]; y++){

newColor = true;

38



//Grab relevant hue

temp = (*img)[x*scale][y*scalel;

hue = convertRGBToHSV((int)temp.r,(int)temp.g,(int)temp.b);

//Compare to each entry in the ColorPalette

//If a matching color is found, check the pixels above and

to the left, and if they're the same, assign the pixel the

number of the matching pixel. If they both match, add the

pair to the actuallyTheSame array

colorIndex = colorPalette->findSampleIndex(hue);

if (colorIndex==-1) {

cc[xl[yl =-1;

continue;

}

//Check above

if (y>O) {

tempUp=(*img)[x*scale][(y-1)*scalel;

colorIndexUp = colorPalette->findSampleIndex

(convertRGBToHSV((int)tempUp.r,(int)tempUp.g,(int)tempUp.b));

if (colorIndex==colorIndexUp){

newColor= false;

cc[xl[yl=cc[x][y-11;

}

}

//Check left

if (x>O) {

tempLeft=(*img) [(x-1)*scale] [y*scale]

39



colorIndexLeft = colorPalette->findSampleIndex

(convertRGBToHSV((int)tempLeft.r,(int)tempLeft.g,(int)tempLeft.b));

//If this color is the same as the one to the left,

but not the same as the one above

if ((colorIndex==colorIndexLeft)&&(newColor)){

newColor = false;

cc[x] [y]=cc[x-1] [y];

}

//else if this color is the same as both the one to the

left and above

else if (colorIndex==colorIndexLeft){

//newColor is already false

if (cc[x-11 [yl==cc[x] [y-1) {

cc[x] [y]=cc[x-1] [yl;

continue;

}

//Then colorIndex==colorIndexLeft and colorIndexUp, and

so cc@colorIndexLeft is equiv cc@colorIndexUp, and this

should be added to equiv array

// check existing equivalence map, and if either member is a

dictionary entry, add the other to the list (making sure it's

not already there)

//If neither is, add the smaller one as the key, and then BOTH

as an entry. If both exist, take the smaller one and add the

bigger one's stuff to it.

//while(!upIter->second.empty()) delete

upIter->second.backo, upIter->second.pop-backo;

//TODO: make sure if "new" is being used, I use "delete"

Currently I'm assuming the memory will be deallocated

when the vector goes out of scope.

40



leftIter = getMapKey(cc[x-11[yl,equivalence);

upIter = getMapKey(cc[xl[y-1l,equivalence);

if (leftIter!=equivalence.end() && upIter!=equivalence.end()){

if (cc[x-1] [y] <cc [x] [y-1]) {

//Add colorIndexUp's equivalence vector to

colorIndexLeft's, and delete colorIndexUp's entry

addValToMapVector

(leftIter,upIter,equivalence, cc, x, (y-1), x, y);

}

else{

//delete leftIter->second;

addValToMapVector

(upIter, leftIter, equivalence, cc, x-1, y, x, y);

}

}

else if (leftIter!=equivalence.endo){

addValToMapVector(leftIter,cc[x][y-1l);

cc[x] [yl = leftIter->first;

}

else if (upIter!=equivalence.end()){

addValToMapVector(upIter,cc[x-1][yl);

cc[x][y] = upIter->first;

}

else{

if (cc[x-1] [yl<cc[x] [y-1]){

addValToMapVector

(equivalence, cc, (x-1), y, x, (y-1), x, y);

}

else{

41



addValToMapVector

(equivalence, cc, x, (y-1), (x-1), y, x, y);

}

}

}

}

if (newColor){

cc[x][yl=ccIndex;

ccIndex++;

}

}

}

Second loop: do the second pass of connected components

and get centroids

//Have a map from CC num to [total pixels of that, total x, total yl

//Have another map from Color Sample index to max num of pixels

unorderedmap<int, centroidInfo> CCPixelMap, sampleMap;

for (int x = 0; x<dims[O]; x++){

for (nt y = 0; y<dims[1l; y++){

if (cc[x][yl==-l) continue;

imMap::iterator iter = getMapKey(cc[xl[yl,equivalence);

if (iter!=equivalence.endo) cc[x][yl=iter->first;

//Add the pixel to the data structure storing the sizes of

the components

if (CCPixelMap.find(cc[x][yl)==CCPixelMap.endo){

CCPixelMap[cc[xl[yll.count = 1;

42



CCPixelMap[cc[xl[yll.xTotal = x*scale;

CCPixelMap[cc[xl[yll.yTotal = y*scale;

temp = (*img)[x*scale][y*scalel;

colorIndex = colorPalette->findSampleIndex

(convertRGBToHSV((int)temp.r,(int)temp.g,(int)temp.b));

CCPixelMap[cc[xl[yll.colorIndex = colorIndex;

}

else {

CCPixelMap[cc[x][yll.count+=1;

CCPixelMap[cc[xl[yll.xTotal+= x*scale;

CCPixelMap[cc[x][yll.yTotal+= y*scale;

}

}

}

//Go through all the CCPixelMap entries,

and find the largest of each color

for (unordered-map<int, centroidInfo>::iterator iter =

CCPixelMap.begino; iter!=CCPixelMap.endo; iter++){

if (sampleMap[iter->second.colorIndexl.count < iter->second.count){

sampleMap[iter->second.colorIndex] = iter->second;

sampleMap[iter->second.colorIndexl.ccIndex = iter->first;

}

}

std::stringstream convert;

std::string output;

convert<<"";

double angle;

int xO, yO, x1, y1;

for (unordered-map<int, centroidInfo>::iterator

43



iter = sampleMap.begino; iter!=sampleMap.endo; iter++){

for (unordered-map<int, centroidInfo>::iterator iter2 = iter;

iter2!=sampleMap.endo; iter2++){

xO = iter->second.xTotal/iter->second.count;

yO = iter->second.yTotal/iter->second.count;

x1 = iter2->second.xTotal/iter2->second.count;

yl = iter2->second.yTotal/iter2->second.count;

angle = atan2((xl-xO), (yl-yO));

//I think I may have somehow switched x and y?

std::cout<<iter->second.count<<" "<<iter->

second. colorIndex<<" "<<yO<<" "<<xO<<"\n";

std::cout<<iter2->second.count<<" "<<iter2->

second.colorIndex<<" "<<y<<" "<<x1<<"\n\n";

if (iter->second.count<50 || iter2->second.count<50){

convert<<iter->second.colorIndex<< " " << iter2->

second.colorIndex<<" "<<-1000.0<<"\n";

}

else{

convert<<iter->second.colorIndex<< " " << iter2->

second.colorIndex<<" "<<angle<<"\n";

}

}

}

output = convert.str();

//printEquivMap(equivalence);

printCC(cc,dims[01,dims[1]);

//std::cout<<output;

std::cout<<"Next frame!\n";

44



// Deallocate cc

for (nt i = 0; i < dims[01; ++i){

delete[] cc[i];

}

deleteEl cc;

return output;

}

//For one of top or left in equiv

void ImageProcessor::addValToMapVector(imMap::iterator iter, int val){

iter->second.insert(val);

}

//For both top and left in equiv

void ImageProcessor::addValToMapVector(imMap::iterator& iterTo,

imMap::iterator& iterFrom, imMap& equivTemp,

int **ccTemp, int oldX, int oldY, int currX, int currY){

unorderedset<int>::iterator setIter;

for (setIter = iterFrom->second.begino;

setIter!=iterFrom->second.end(); setIter++){

iterTo->second.insert(*setIter);

}

equivTemp. erase (ccTemp [oldX] [oldY]);

ccTemp[oldX][oldY] = iterTo->first;

ccTemp[currX][currY] = iterTo->first;

}

//For neither top nor left in equiv

// Small: small value, Big: bigger value

45



void ImageProcessor::addValToMapVector

(imMap& equivTemp, int **ccTemp, int smallX, int smallY,

int bigX, int bigY, int currX, int currY){

equivTemp [ccTemp [smallX] [smallYl I .insert (ccTemp [smallX] [smallY]);

equivTemp[ccTemp[smallX][smallYl.insert(ccTemp[bigX][bigY]);

ccTemp[currX][currY] = ccTemp[smallX][smallY];

ccTemp[bigX][bigY] = ccTemp[smallXl[smallY];

}

imMap::iterator ImageProcessor::getMapKey

(nt num, imMap& mapToCheck){

imMap::iterator iter;

unorderedset<int>::iterator returnIndex;

for (iter = mapToCheck.begino; iter!=mapToCheck.endo; iter++){

returnIndex = iter->second.find(num);

if (returnIndex != iter->second.endo) {

return iter;

}

}

return mapToCheck.endo;

}

void ImageProcessor::printEquivMap(imMap& equivTemp){

imMap:: iterator iterMap;

unorderedset<int>::iterator iterVec;

for (iterMap = equivTemp.begino;

iterMap!=equivTemp.endo; iterMap++){

46



std::cout<<iterMap->first<<"\n";

for (iterVec = iterMap->second.begino;

iterVec != iterMap->second.endO; iterVec++){

std::cout<<" "<<*iterVec<<"\n";

}

}

}

void ImageProcessor::printCC(int **ccTemp, int dimX, int dimY){

for (int x = 0; x<dimX;x++){

std::cout<<"\n";

for (int y = 0; y<dimY; y++){

std: :cout<< "<<ccTemp[x] [y]

}

}

}

double ImageProcessor::convertRGBToHSV(int r, int g, int b)

{

float alpha = .5*(2*r-g-b);

float beta = (sqrt(3)/2)*(g-b);

float hue = atan2(beta,alpha);

float lightness = (r+g+b)/3;

//std::cout<<lightness<<", ";

if (lightness>lightnessThresh || lightness<minLightThresh)

return -1000;

return hue*180/3.1415926535;

}

47



48



Appendix B

Library Matching

This method determines which library entry best matches the string

taken from the webcam.

public LibraryEntry matchToLibrary(){

double minDistance = 10000000, distance;

LibraryEntry minLib = new LibraryEntryo;

this.cam.lock.lock();

HashMap<TreeSet<Integer>, Double> currentMap =

(HashMap<TreeSet<Integer>, Double>)

this.cam.angleMap.clone();

this.cam.lock.unlock(;

for (LibraryEntry lib:library){

//Iterate through the hashmap, and for every entry find

the angle distance distance = 0;

//Go through the library map and find the error for each entry

for (Map.Entry<TreeSet<Integer>,Double> entry: lib.match.entrySet(){

if (entry.getKey().size(==1) continue;

if (currentMap. containsKey(entry. getKey() ) ){

49



distance+=Math.pow((currentMap.get(entry.getKey())-entry.getValueo),2);

}

else {

distance+=Math.pow(Math.PI,2);

}

}

distance/=lib.match.sizeo;

//Go through the current map and find the error for each entry

double distance2 = 0;

for (Map.Entry<TreeSet<Integer>,Double> entry: currentMap.entrySeto){

if (entry.getKey().sizeO==1) continue;

if (lib.match.containsKey(entry.getKeyo)){

distance2+=Math.pow((lib.match.get(entry.getKeyo)-entry.getValueo)),2);

}

else {

distance2+=Math.pow(Math.PI,2);

}

}

distance2/=currentMap.sizeO;

distance+= distance2;

System.out.println("For pose: " + lib.id + Error total is:" + distance+"\n");

if (distance<minDistance){

minDistance = distance;

minLib = lib;

}

}

return minLib;

}

50



Bibliography

[1] Nintendo Wii. Retrieved from http: //www.nintendo. com/wii/.

[2] PlayStation Move. Retrieved from http://us.playstation.com/ps3/

playstation-move/.

[3] Xbox 360 Kinect. Retrieved from http://www.xbox. com/en-US/kinect.

[4] Vivitouch. Retrieved from http://www.vivitouch. com/.

[5] Dance Dance Revolution. Retrieved from http: //konami. com/ddr.

[6] Current Projects. Harmonix. Retrieved from http://www.harmonixmusic.com/

projects.

[7] Company History. Nintendo Corporate. Retrieved from http://www.nintendo.

com/corp/history.jsp.

[8] Analog Devices. (2006, May 5). Analog Devices and Nintendo Collaboration Drives

Video Game Innovation with IMEMS Motion Signal Processing Technology [Press

Release]. Retrieved from http://www.analog. com/en/press-release/May_09_

2006_ADINintendoCollaboration/press.html

[9] Castaneda, K. (2006, May 13). Nintendo and PixArt Team Up. Nintendo World

Report. Retrieved from http: //www. nintendoworldreport. cm/news/11557

[10] Ohta, K. (2006). U.S. Patent No. 2007/0211027. Washington, DC: U.S. Patent

and Trademark Office.

51



[11] Sony Computer Entertainment, Inc. (2010, March 10). PlayStation Move Mo-

tion Controller Delivers a Whole New Entertainment Experience to PlayStation

3: New PlayStation Move Sub-Controller, Enabling Intuitive Navigation, to Ac-

company the Release of the Motion Controller This Fall and 36 Developers and

Publishers to Support PlayStation Move Platform [Press Release]. Retrieved from

http://scei.co.jp/corporate/release/100311e.html

[12] Barras, C. (2010, January 7). Microsoft's body-sensing, button-busting con-

troller. NewScientist. Retrieved from http: //www. newscientist . com/art icle/

mg20527426.800-microsofts-bodysensing-buttonbusting-controller.

html

[13] Kinect Including Kinect: Adventures!. Retrieved from http: //www. play. com/

Games/Xbox360/4-/10296372/Project-Natal/Product . html#jump-tech.

[14] PlayStation Move Teardown. iFixit. Retrieved from http: //www. if ixit . com/

Teardown/PlayStation-Move-Teardown/3594/1#.T7OiMdxYsjp

[15] Bolton, M. (2010, September 5). PlayStation Move review: Design.

Tech Radar. Retrieved from http://www.techradar. com/reviews/gaming/

gaming-accessories/playstation-move-713638/review?artc-pg=2

[16] Wang, R., Popovic, J. (2009). Real-time hand-tracking with a color glove.

ACM Transaction on Graphics (SIGGRAPH 2009), 28(3). Retrieved from http:

//people. csail .mit . edu/rywang/handtracking/s09-hand-tracking .pdf

[17] Ward, J. (2008, April 29). What is a game engine? Game Career Guide.

Retrieved from http://www.gamecareerguide. com/features/529/what-is_a_

game.php

[18] Wilson, K. (2006, July 15). Why C++? GameArchitect.net. Retrieved from

http://gamearchitect.net/Articles/WhyC++.html

[19] Feeling is Believing. Vivitouch. Retrieved from http://www.vivitouch.com/

eap.php.

52



[20] Bar-Cohen, Y. (2002, March 14). Electroactive Polymers as Artificial Muscles:

Reality, Potential and Challenges [PDF Slides]. Retrieved from http: //trs-new.

jpl.nasa.gov/dspace/bitstream/2014/38252/1/04-0044.pdf

[21] EAP Technology. (2011). Joystiq. Retrieved from http://www.blogcdn.com/

www.joystiq.com/media/2011/09/vivitouch.jpg

[22] Vivitouch Haptic Feedback Evaluation Kit Operating Instructions. (2011, Octo-

ber). Artificial Muscle Inc.

[23] Blender. Retrieved from http: //www. blender. org/

[24] Okami. Retrieved from http: //www. okami-game. com/

[25] Myst V: End of Ages. Retrieved from http://www.ubi.com/UK/Games/Info.

aspx?pId=3450

[26] Trauma Center: Under the Knife 2. Retrieved from http: //www. atlus. com/

tcutk2/

[27] Apte, A., Kimura, T. (1993, March). A Comparison Study of the Pen and the

Mouse in Editing Graphic Diagrams. Paper presented at IEEE/CS Symposium

on Visual Languages, Bergen, Norway.

53


