171 research outputs found

    The relationship between redox enzyme activity and electrochemical potential—cellular and mechanistic implications from protein film electrochemistry

    Get PDF
    In protein film electrochemistry a redox protein of interest is studied as an electroactive film adsorbed on an electrode surface. For redox enzymes this configuration allows quantification of the relationship between catalytic activity and electrochemical potential. Considered as a function of enzyme environment, i.e., pH, substrate concentration etc., the activity–potential relationship provides a fingerprint of activity unique to a given enzyme. Here we consider the nature of the activity–potential relationship in terms of both its cellular impact and its origin in the structure and catalytic mechanism of the enzyme. We propose that the activity–potential relationship of a redox enzyme is tuned to facilitate cellular function and highlight opportunities to test this hypothesis through computational, structural, biochemical and cellular studies

    Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.

    Get PDF
    Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention

    PRIMA subretinal wireless photovoltaic microchip implantation in non-human primate and feline models

    Get PDF
    Purpose To evaluate the surgical technique for subretinal implantation of two sizes of PRIMA photovoltaic wireless microchip in two animal models, and refine these surgical procedures for human trials. Methods Cats and Macaca fascicularis primates with healthy retina underwent vitrectomy surgery and were implanted with subretinal wireless photovoltaic microchip at the macula/central retina. The 1.5mm PRIMA chip was initially studied in feline eyes. PRIMA implant (2mm,1.5mm sizes) arrays were studied in primates. Feasibility of subretinal chip implantation was evaluated with a newly-developed surgical technique, with surgical complications and adverse events recorded. Results The 1.5mm implant was placed in the central retina of 11 feline eyes, with implantation duration 43-106 days. The 1.5mm implant was correctly positioned into central macula of 11 primate eyes, with follow-up periods of minimum 6 weeks (n = 11), 2 years (n = 2), and one eye for 3 years. One primate eye underwent multi-chip 1.5mm implantation using two 1.5mm chips. The 2mm implant was delivered to 4 primate eyes. Optical coherence tomography confirmed correct surgical placement of photovoltaic arrays in the subretinal space in all 26 eyes. Intraoperative complications in primate eyes included retinal tear, macular hole, retinal detachment, and vitreous hemorrhage that resolved spontaneously. Postoperatively, there was no case of significant ocular inflammation in the 1.5mm implant group. Conclusions We report subretinal implantation of 1.5mm and 2mm photovoltaic arrays in the central retina of feline and central macula of primate eyes with a low rate of device-related complications. The in vivo PRIMA implantation technique has been developed and refined for use for a 2mm PRIMA implant in ongoing human trials

    Grafted Human Embryonic Progenitors Expressing Neurogenin-2 Stimulate Axonal Sprouting and Improve Motor Recovery after Severe Spinal Cord Injury

    Get PDF
    7 p.Background: Spinal cord injury (SCI) is a widely spread pathology with currently no effective treatment for any symptom. Regenerative medicine through cell transplantation is a very attractive strategy and may be used in different non-exclusive ways to promote functional recovery. We investigated functional and structural outcomes after grafting human embryonic neural progenitors (hENPs) in spinal cord-lesioned rats.Methods and Principal Findings: With the objective of translation to clinics we have chosen a paradigm of delayed grafting, i.e., one week after lesion, in a severe model of spinal cord compression in adult rats. hENPs were either naive or engineered to express Neurogenin 2 (Ngn2). Moreover, we have compared integrating and non-integrating lentiviral vectors, since the latter present reduced risks of insertional mutagenesis. We show that transplantation of hENPs transduced to express Ngn2 fully restore weight support and improve functional motor recovery after severe spinal cord compression at thoracic level. This was correlated with partial restoration of serotonin innervations at lumbar level, and translocation of 5HT1A receptors to the plasma membrane of motoneurons. Since hENPs were not detectable 4 weeks after grafting, transitory expression of Ngn2 appears sufficient to achieve motor recovery and to permit axonal regeneration. Importantly, we also demonstrate that transplantation of naive hENPs is detrimental to functional recovery.Conclusions and Significance: Transplantation and short-term survival of Ngn2-expressing hENPs restore weight support after SCI and partially restore serotonin fibers density and 5HT1A receptor pattern caudal to the lesion. Moreover, grafting of naive-hENPs was found to worsen the outcome versus injured only animals, thus pointing to the possible detrimental effect of stem cell-based therapy per se in SCI. This is of major importance given the increasing number of clinical trials involving cell grafting developed for SCI patients.This study was supported by the European Union FP6 "RESCUE" STREP; the "Institut pour la Recherche sur la Moelle Epiniere"; the "Academie de Medecine"; the "Societe Francaise de Neurochirurgie"; "Verticale" and the "Association Demain Debout Aquitaine". The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The multidrug resistance 1 (MDR1) gene polymorphism G-rs3789243-A is not associated with disease susceptibility in Norwegian patients with colorectal adenoma and colorectal cancer; a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smoking, dietary factors, and alcohol consumption are known life style factors contributing to gastrointestinal carcinogenesis. Genetic variations in carcinogen handling may affect cancer risk. The multidrug resistance 1(<it>MDR1/ABCB1</it>) gene encodes the transport protein P-glycoprotein (a phase III xenobiotic transporter). P-glycoprotein is present in the intestinal mucosal lining and restricts absorption of certain carcinogens, among these polycyclic aromatic hydrocarbons. Moreover, P-glycoprotein transports various endogenous substrates such as cytokines and chemokines involved in inflammation, and may thereby affect the risk of malignity. Hence, genetic variations that modify the function of P-glycoprotein may be associated with the risk of colorectal cancer (CRC). We have previously found an association between the <it>MDR1 </it>intron 3 G-rs3789243-A polymorphism and the risk of CRC in a Danish study population. The aim of this study was to investigate if this <it>MDR1 </it>polymorphism was associated with risk of colorectal adenoma (CA) and CRC in the Norwegian population.</p> <p>Methods</p> <p>Using a case-control design, the association between the <it>MDR1 </it>intron 3 G-rs3789243-A polymorphism and the risk of colorectal carcinomas and adenomas in the Norwegian population was assessed in 167 carcinomas, 990 adenomas, and 400 controls. Genotypes were determined by allelic discrimination. Odds ratio (OR) and 95 confidence interval (95% CI) were estimated by binary logistic regression.</p> <p>Results</p> <p>No association was found between the <it>MDR1 </it>polymorphism (G-rs3789243-A) and colorectal adenomas or cancer. Carriers of the variant allele of MDR1 intron 3 had odds ratios (95% CI) of 0.97 (0.72–1.29) for developing adenomas, and 0.70 (0.41–1.21) for colorectal cancer, respectively, compared to homozygous wild type carriers.</p> <p>Conclusion</p> <p>The <it>MDR1 </it>intron 3 (G-rs3789243-A) polymorphism was not associated with a risk of colorectal adenomas or carcinomas in the present Norwegian study group. Thus, this <it>MDR1 </it>polymorphism does not seem to play an important role in colorectal carcinogenesis in this population.</p

    Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN) that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge.</p> <p>Results</p> <p>We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC) devoted to BN structure learning.</p> <p>Conclusion</p> <p>We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.</p

    The Generation of Promoter-Mediated Transcriptional Noise in Bacteria

    Get PDF
    Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005) can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise.Comment: 4 figures, 1 table. Supplemental materials are also include

    α-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate

    Get PDF
    BACKGROUND: A strategy to reduce the secondary effects of anti-cancer agents is to potentiate the therapeutic effect by their combination. A combination of vitamin K3 (VK3) and ascorbic acid (AA) exhibited an anti-cancer synergistic effect, associated with extracellular production of H2O2 that promoted cell death. METHODS: The redox-silent vitamin E analogue a-tocopheryl succinate (a-TOS) was used in combination with VK3 and AA to evaluate their effect on prostate cancer cells. RESULTS: Prostate cancer cells were sensitive to a-TOS and VK3 treatment, but resistant to AA upto 3.2mM. When combined, a synergistic effect was found for VK3\u2013AA, whereas a-TOS\u2013VK3 and a-TOS\u2013AA combination showed an antagonist and additive effect, respectively. However, sub-lethal doses of AA\u2013VK3 combination combined with a sub-toxic dose of a-TOS showed to induce efficient cell death that resembles autoschizis. Associated with this cell demise, lipid peroxidation, DNA damage, cytoskeleton alteration, lysosomal\u2013mitochondrial perturbation, and release of cytochrome c without caspase activation were observed. Inhibition of lysosomal proteases did not attenuate cell death induced by the combined agents. Furthermore, cell deaths by apoptosis and autoschizis were detected. CONCLUSION: These finding support the emerging idea that synergistic combinations of some agents can overcome toxicity and other side-effects associated with high doses of single drugs creating the opportunity for therapeutically relevant selectivity

    The radicalization of democracy: conflict, social movements and terrorism

    Get PDF
    The idea of democracy is being championed across the world, with some fifty new countries embracing this type of political system between 1974 and 2011 (Freedom House, 2016). Simultaneously, however, dissatisfaction has grown due to the perceived incapacity of democracy to deal with collective problems, hence the necessity to reconfigure it and redraw some of its principles. This paper links the analysis of the recent evolution of democratic systems with the trajectory of socio-political conflicts and the changing features of contemporary terrorism. It examines, therefore, two intertwined phenomena, namely the radicalization of democracy and the radicalization of the other. It concludes by stressing that encouraging dissent and heeding contentious claims made by social movements may be one way of mitigating both types of radicalization. Embedded in the tradition of critical criminology, this paper attempts to demonstrate that only by outflanking conventional categories of analysis can the criminological community aspire to grasp such thorny contemporary phenomena
    • 

    corecore